Các đơn thức còn thiếu hàng trên lần lượt là: b, a, b, a, b. Hàng dưới lần lượt là: \({a^2}b,a{b^2},{a^2}b,a{b^2},a{b^2}\)
Ta có: \({(a + b)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}\)
Các hệ số nhận được khi khai triển là bằng nhau.
Các đơn thức còn thiếu hàng trên lần lượt là: b, a, b, a, b. Hàng dưới lần lượt là: \({a^2}b,a{b^2},{a^2}b,a{b^2},a{b^2}\)
Ta có: \({(a + b)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}\)
Các hệ số nhận được khi khai triển là bằng nhau.
Hãy vẽ sơ đồ hình cây của khai triển \({(a + b)^4}\) được mô tả như Hình 8.9. Sau khi khai triển, ta thu được một tổng gồm \({2^4}\) (theo quy tắc nhân) đơn thức có dạng x. y. z. t, trong đó mỗi x, y, z, t là a hoặc b. Chẳng hạn, nếu x, y, t là a, còn z là b thì ta có đơn thức a. a. b. a, thu gọn là \({a^3}b\). Để có đơn thức này, thì trong 4 nhân tử x, y, z, t có 1 nhân tử là b, 3 nhân tử còn lại là a. Khi đó số đơn thức đồng dạng với \({a^3}b\) trong tổng là \(C_4^1\).
Lập luận tương tự trên, dùng kiến thức về tổ hợp, hãy cho biết trong tổng nêu trên, có bao nhiêu đơn thức đồng dạng với mỗi đơn thức thu gọn sau.
\({a^4};\quad {a^3}b;\quad {a^2}{b^2};\quad a{b^3};\quad {b^4}?\)
Tương tự như HĐ3, sau khi khai triển \({(a + b)^5}\), ta thu được một tổng gồm \({2^5}\) đơn thức có dạng x. y. z. t. u, trong đó mỗi kí hiệu x, y, z, t, u là a hoặc b. Chẳng hạn, nếu x, z là a, còn y, t, u là b thì ta có đơn thức a. b. a. b. b, thu gọn là \({a^2}{b^3}\). Để có đơn thức này, thì trong 5 nhân tử x, y, z, t, u có 3 nhân tử là b, 2 nhân tử còn lại là a. Khi đó số đơn thức đồng dạng với \({a^3}b\) trong tổng là \(C_5^3\).
Lập luận tương tự trên, dùng kiến thức về tổ hợp, hãy cho biết trong tổng nêu trên, có bao nhiêu đơn thức đồng dạng với mỗi đơn thức thu gọn sau.
\({a^5};{a^4}b;{a^3}{b^2};{a^2}{b^3};a{b^4};{b^5}?\)
Hãy xây dựng sơ đồ của tích hai nhị thức (a+b).(c+d) như sau:
Từ một điểm gốc, kẻ các mũi tên, mỗi mũi tên tương ứng với một đơn thức (gọi là nhãn của mũi tên) của nhị thức thứ nhất (H 8.6);
Từ ngọn của mỗi mũi tên đã xây dựng, kẻ các mũi tên, mỗi mũi tên tương ứng với một đơn thức của nhị thức thứ hai;
Tại ngọn của các mũi tên xây dựng tại bước sau cùng, ghi lại tích của các nhân của các mũi tên đi từ điểm gốc đến đầu mút đó.
Hãy lấy tổng của các tích nhận được và so sánh kết quả với khai triển của tích (a+b).(c+d).
a) Dùng hai số hạng đầu tiên trong khai triển của \({(1 + 0,05)^4}\) để tính giá trị gần đúng của \(1,{05^4}\).
b) Dùng máy tính cầm tay tính giá trị của \(1,{05^4}\) và tính sai số tuyệt đối của giá trị gần đúng nhận được ở câu a.
a) Dùng hai số hạng đầu tiên trong khai triển của \({(1 + 0,02)^5}\) để tính giá trị gần đúng của \(1,{02^5}\).
b) Dùng máy tính cầm tay tính giá trị của \(1,{02^5}\) và tính sai số tuyệt đối của giá trị gần đúng nhận được ở câu a.
Biểu diễn \({(3 + \sqrt 2 )^5} - {(3 - \sqrt 2 )^5}\) dưới dạng \(a + b\sqrt 2 \) với a, b là các số nguyên.
Khai triển các đa thức:
a) \({(x - 3)^4};\)
b) \({(3x - 2y)^4};\)
c) \({(x + 5)^4} + {(x - 5)^4};\)
d) \({(x - 2y)^5}\)
Tìm hệ số của \({x^4}\) trong khai triển của \({(3x - 1)^5}.\)
Số dân của một tỉnh ở thời điểm hiện tại là khoảng 800 nghìn người. Giả sử rằng tỉ lệ tăng dân số hằng năm của tỉnh đó là r%
a) Viết công thức tính số dân của tỉnh đó sau 1 năm, sau 2 năm. Từ đó suy ra công thức dân của tỉnh đó sau 5 năm nữa (theo đơn vị nghìn người).
b) Với \(r = 1,5\% \), dùng hai số hạng đầu trong khai triển của \({(1 + 0,015)^5},\) hãy ước tính số dân của tỉnh đó sau 5 năm nữa (theo đơn vị nghìn người)