\(y'=\dfrac{x^2+2mx-4m}{\left(x+m\right)^2}\)
Xét pt \(f\left(x\right)=x^2+2mx-4m=0\) với \(\Delta'=m^2+4m\)
TH1: \(\left\{{}\begin{matrix}\Delta'=m^2+4m\le0\\-m< 1\end{matrix}\right.\) \(\Rightarrow-1< m\le0\)
TH2: \(\left\{{}\begin{matrix}\Delta'=m^2+4m>0\\x_1< x_2\le1\\-m< 1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>0\\f\left(1\right)\ge0\\\dfrac{x_1+x_2}{2}=-m< 1\\\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\1-2m\ge0\end{matrix}\right.\) \(\Rightarrow0< m\le\dfrac{1}{2}\)
Kết hợp lại ta được \(-1< m\le\dfrac{1}{2}\)