Hàm số \(y=\frac{x}{x+1}\) không xác định tại \(x=-1\) nên ko liên tục trên R
Hàm số \(y=\frac{x}{x+1}\) không xác định tại \(x=-1\) nên ko liên tục trên R
Xác định một hàm số \(y=f\left(x\right)\) thỏa mãn đồng thời các điều kiện sau :
a) \(f\left(x\right)\) xác định trên R
b) \(y=f\left(x\right)\) liên tục trên \(\left(-\infty;0\right)\) và trên [ \(0;+\infty\)) nhưng gián đoạn tại x = 0
Giả sử hai hàm số \(y=f\left(x\right)\) và \(y=f\left(x+\dfrac{1}{2}\right)\) đều liên tục trên đoạn \(\left[0;1\right]\) và \(f\left(0\right)=f\left(1\right)\).
Chứng minh rằng phương trình \(f\left(x\right)-f\left(x+\dfrac{1}{2}\right)=0\) luôn có nghiệm trong đoạn \(\left[0;\dfrac{1}{2}\right]\) ?
Xác định một hàm số \(y=f\left(x\right)\) thỏa mãn đồng thời các điều kiện sau :
a) \(f\left(x\right)\) xác định trên R\{1}
b) \(\lim\limits_{x\rightarrow1}f\left(x\right)=+\infty;\lim\limits_{x\rightarrow+\infty}f\left(x\right)=2;\lim\limits_{x\rightarrow-\infty}f\left(x\right)=2\)
Xét tính liên tục trên R của hàm số :
\(g\left(x\right)=\left\{{}\begin{matrix}\dfrac{x^2-x-2}{x-2};\left(x>2\right)\\5-x;\left(x\le2\right)\end{matrix}\right.\)
Xét tính liên tục của hàm số
\(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{x^2+5x+4}{x^3+1};x\ne-1\\1;x=-1\end{matrix}\right.\)
trên tập xác định của nó ?
Cho hàm số f(x) = \(\left\{{}\begin{matrix}x^2sin\dfrac{1}{x}\left(x\ne0\right)\\0\left(x=0\right)\end{matrix}\right.\)
a, Tính \(g\left(x\right)=\lim\limits_{t\rightarrow0}=\dfrac{f\left(x+t\right)-f\left(x-2t\right)}{2t}\) (x thuộc R)
b, Khảo sát sự tồn tại của g'(x) với x thuộc R
Cho hai hàm số \(f\left(x\right)=\dfrac{1-x^2}{x^2}\) và \(g\left(x\right)=\dfrac{x^3+x^2+1}{x^2}\)
a) Tính \(\lim\limits_{x\rightarrow0}f\left(x\right);\lim\limits_{x\rightarrow0}g\left(x\right);\lim\limits_{x\rightarrow+\infty}f\left(x\right);\lim\limits_{x\rightarrow+\infty}g\left(x\right)\)
b) Hai đường cong sau đây (h.60) là đồ thị của hai hàm số đã cho. Từ kết quả câu a), hãy xác định xem đường con nào là đồ thị của mỗi hàm số đó ?
Tìm tất cả các giá trị thực của m để hàm số \(f\left(x\right)=\left\{{}\begin{matrix}\frac{\sqrt{x+1}-1}{x}khix>0\\\sqrt{x^2+1}-mkhix\le0\end{matrix}\right.\) liên tục trên R
A. \(m=\frac{3}{2}\)
B. \(m=\frac{1}{2}\)
C. \(m=-2\)
D. \(m=-\frac{1}{2}\)
Trong các giới hạn sau , giới hạn nào không tồn tại ?
A. \(lim\frac{x+1}{\sqrt{x-2}}\left(x\rightarrow1\right)\)
B. \(lim\frac{x+1}{\sqrt{-x+2}}\left(x\rightarrow-1\right)\)
C. \(lim\frac{x+1}{\sqrt{2-x}}\left(x\rightarrow1\right)\)
D. \(lim\frac{x+1}{\sqrt{2+x}}\left(x\rightarrow-1\right)\)