Hai số nguyên dương có tỉ số giữa số thứ nhất và số thứ hai bằng \(\dfrac{3}{5}\). Nếu lấy số thứ nhất chia cho 9, số thứ hai chia cho 6 thì thương của phép chia số thứ nhất cho 9 bé hơn thương của phép chia số thứ hai cho 6 là 3 đơn vị. Tìm hai số đó biết rằng các phép chia nói trên đều là phép chia hết ?
+) Gọi số thứ nhất (ban đầu) là x. (x: nguyên, dương)
Khi đó số thứ hai (ban đầu) là \(\dfrac{3}{5}x\)
+) Số thứ nhất sau khi chia cho 9 gọi là \(\dfrac{x}{9}\)
Số thứ hai sau khi chia cho 6 gọi là \(\dfrac{\dfrac{3}{5}x}{6}\)
Vì: thương số thứ nhất chia cho 9 bé hơn thương số thứ hai chia cho 6 là 3 đơn vị nên ta có phương trình:
\(\dfrac{x}{9}+3=\dfrac{\dfrac{3}{5}x}{6}\\ < =>\dfrac{2x}{18}+\dfrac{54}{18}=\dfrac{\dfrac{9}{5}x}{18}\\ < =>2x+54=\dfrac{9}{5}x\\ < =>2x-\dfrac{9}{5}x=-54\\< =>\dfrac{1}{5}x=-54\\ =>x=\dfrac{-54}{\dfrac{1}{5}}=-270\left(loại\right)\)
Vậy: Không thỏa mãn yêu cầu đề bài.