Gọi a và b lần lượt là số trận đấu thủ ở đội trường A và trường B, với \(a,b\in\)\(\mathbb{N^*}\)
Theo đề bài, ta có: \(ab=2\left(a+b\right)\Leftrightarrow\left(a-2\right)\left(b-2\right)=4\)
Nhận xét: Do \(a,b\in\)\(\mathbb{N^*}\) \(\Rightarrow a-2\in\)\(\mathbb{Z}\); \(b-2\)\(\in\)\(\mathbb{Z}\)
Lập bảng:
\(a-2\) | \(-4\) | \(-2\) | \(-1\) | \(1\) | \(2\) | \(4\) |
\(b-2\) | \(-1\) | \(-2\) | \(-4\) | \(4\) | \(2\) | \(1\) |
\(a\) | \(-2\) | \(0\) | \(1\) | \(3\) | \(4\) | \(6\) |
\(b\) | \(1\) | \(0\) | \(-2\) | \(6\) | \(4\) | \(3\) |
KL: \(a=4,b=4\) hoặc \(a=3,b=6\) hoặc \(a=6,b=3\)