a) Kết quả trung bình của Cung thủ A là:
\(\frac{{8 + 9 + 10 + 7 + 6 + 10 + 6 + 7 + 9 + 8}}{{10}} = 8\)
Kết quả trung bình của Cung thủ A là:
\(\frac{{10 + 6 + 8 + 7 + 9 + 9 + 8 + 7 + 8 + 8}}{{10}} = 8\)
b)
+) Khoảng biến thiên số điểm của cung thủ A là: \(R = 10 - 6 = 4\)
Xét mẫu số liệu đã sắp xếp là:
\(\begin{array}{*{20}{c}}6&6&7&7&8&8&9&9&{10}&{10}\end{array}\)
Cỡ mẫu là \(n = 10\) là số chẵn nên giá trị tứ phân vị thứ hai là: \({Q_2} = 8.\)
Tứ phân vị thứ nhất là trung vị của mẫu:\(6,6,7,7,8\). Do đó \({Q_1} = 7.\)
Tứ phân vị thứ ba là trung vị của mẫu: \(8,9,9,10,10\). Do đó \({Q_3} = 9\)
Khoảng tứ phân vị của mẫu là: \({\Delta _Q} = 9 - 7 = 2\)
+) Khoảng biến thiên số điểm của cung thủ A là: \(R = 10 - 6 = 4\)
Xét mẫu số liệu đã sắp xếp là:
\(\begin{array}{*{20}{c}}6&7&7&8&8&8&8&9&9&{10}\end{array}\)
Cỡ mẫu là \(n = 10\) là số chẵn nên giá trị tứ phân vị thứ hai là: \({Q_2} = 8.\)
Tứ phân vị thứ nhất là trung vị của mẫu:\(6,6,7,7,8\). Do đó \({Q_1} = 7.\)
Tứ phân vị thứ ba là trung vị của mẫu: \(8,9,9,10,10\). Do đó \({Q_3} = 9\)
Khoảng tứ phân vị của mẫu là: \({\Delta _Q} = 9 - 7 = 2\)
=> Nếu so sánh khoảng chênh lệch và khoảng tứ phân vị thì không xác định được kết quả của cung thủ nào ổn định hơn.