Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quoc Tran Anh Le

Hai cung thủ A và B đã ghi lại kết quả từng lần bắn của mình ở bảng sau:

Cung thủ A

8

9

10

7

6

10

6

7

9

8

Cung thủ B

10

6

8

7

9

9

8

7

8

8

a) Tính kết quả trung bình của mỗi cung thủ trên

b) Cung thủ nào có kết quả các lần bắn ổn định hơn?

Hà Quang Minh
26 tháng 9 2023 lúc 22:54

a) Kết quả trung bình của Cung thủ A là:

\(\frac{{8 + 9 + 10 + 7 + 6 + 10 + 6 + 7 + 9 + 8}}{{10}} = 8\)

Kết quả trung bình của Cung thủ A là:

\(\frac{{10 + 6 + 8 + 7 + 9 + 9 + 8 + 7 + 8 + 8}}{{10}} = 8\)

b)

+) Khoảng biến thiên số điểm của cung thủ A là: \(R = 10 - 6 = 4\)

Xét mẫu số liệu đã sắp xếp là:

\(\begin{array}{*{20}{c}}6&6&7&7&8&8&9&9&{10}&{10}\end{array}\)

Cỡ mẫu là \(n = 10\) là số chẵn nên giá trị tứ phân vị thứ hai là: \({Q_2} = 8.\)

Tứ phân vị thứ nhất là trung vị của mẫu:\(6,6,7,7,8\). Do đó \({Q_1} = 7.\)

Tứ phân vị thứ ba là trung vị của mẫu: \(8,9,9,10,10\). Do đó \({Q_3} = 9\)

Khoảng tứ phân vị của mẫu là: \({\Delta _Q} = 9 - 7 = 2\)

+) Khoảng biến thiên số điểm của cung thủ A là: \(R = 10 - 6 = 4\)

Xét mẫu số liệu đã sắp xếp là:

\(\begin{array}{*{20}{c}}6&7&7&8&8&8&8&9&9&{10}\end{array}\)

Cỡ mẫu là \(n = 10\) là số chẵn nên giá trị tứ phân vị thứ hai là: \({Q_2} = 8.\)

Tứ phân vị thứ nhất là trung vị của mẫu:\(6,6,7,7,8\). Do đó \({Q_1} = 7.\)

Tứ phân vị thứ ba là trung vị của mẫu: \(8,9,9,10,10\). Do đó \({Q_3} = 9\)

Khoảng tứ phân vị của mẫu là: \({\Delta _Q} = 9 - 7 = 2\)

=> Nếu so sánh khoảng chênh lệch và khoảng tứ phân vị thì không xác định được kết quả của cung thủ nào ổn định hơn.


Các câu hỏi tương tự
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết