Có: \(\begin{cases}\left|x-3\right|\ge3-x\\\left|x+\frac{3}{2}\right|\ge x+\frac{3}{2}\end{cases}\)\(\forall x\)
Do đó, \(G=\left|x-3\right|+\left|x+\frac{3}{2}\right|\ge\left(3-x\right)+\left(x+\frac{3}{2}\right)=\frac{9}{2}\)
Dấu "=" xảy ra khi \(\begin{cases}x-3\le0\\x+\frac{3}{2}\ge0\end{cases}\)\(\Rightarrow\begin{cases}x\le3\\x\ge\frac{-3}{2}\end{cases}\)\(\Rightarrow\frac{-3}{2}\le x\le3\)
Vậy GTNN của G là \(\frac{9}{2}\) khi \(\frac{-3}{2}\le x\le3\)