Điều kiện xác định: \(x\ne1;3\)
Với điều kiện xác định như trên:
\(\frac{3}{x-3}-\frac{2}{x-1}=\frac{x-1}{2}-\frac{x-3}{3}\)
\(\Leftrightarrow\frac{3\left(x-1\right)-2\left(x-3\right)}{\left(x-1\right)\left(x-3\right)}=\frac{3\left(x-1\right)-2\left(x-3\right)}{6}\)
\(\Leftrightarrow\frac{x+3}{\left(x-1\right)\left(x-3\right)}=\frac{x+3}{6}\)
\(\Leftrightarrow\left(x+3\right)\left(\frac{1}{\left(x-1\right)\left(x-3\right)}-\frac{1}{6}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\\left(x-1\right)\left(x-3\right)=6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\left(tm\right)\\\left(x-4x+3-6=0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\pm\sqrt{7}\left(tm\right)\end{matrix}\right.\)
Vậy phương trình có 3 nghiệm \(x=-3\) hoặc \(x=2\pm\sqrt{7}\)