Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Curry

GPT:

4x2+12x=9+7x\(\sqrt{ }\)4x-3

Cái sau là căn của 4x-3 nha

tthnew
5 tháng 7 2019 lúc 11:14

Em thử nhá, ko chắc đâu

ĐK: \(x\ge\frac{3}{4}\)

PT \(\Leftrightarrow4x^2+12x-9-7x\sqrt{4x-3}=0\)

\(\Leftrightarrow4x^2-9x-9-7x\left(\sqrt{4x-3}-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(4x+3\right)-\frac{28x\left(x-3\right)}{\sqrt{4x-3}+3}=0\)

\(\Leftrightarrow\left(x-3\right)\left(4x+3-\frac{28x}{\sqrt{4x-3}+3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\4x+3=\frac{28x}{\sqrt{4x-3}+3}\left(1\right)\end{matrix}\right.\)

Giải (1): \(\Leftrightarrow\left(4x+3\right)\sqrt{4x-3}-16x+9=0\)

\(\Leftrightarrow\left(4x+3\right)\left(\sqrt{4x-3}-1\right)-12\left(x-1\right)=0\)

\(\Leftrightarrow\frac{4\left(x-1\right)\left(4x+3\right)}{\sqrt{4x-3}+1}-12\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[\frac{4\left(4x+3\right)}{\sqrt{4x-3}+1}-12\right]=0\)

Nhận xét rằng cái ngoặc to luôn > 0 với mọi \(x\ge\frac{3}{4}\). Suy ra x = 1

Vậy tập hợp nghiệm của pt: S = {1;3}

tthnew
7 tháng 9 2019 lúc 20:18

Cách 2:

ĐK: \(x\ge\frac{3}{4}\)

\(4x^2+12x-9-7x\sqrt{4x-3}=0\)

\(\Leftrightarrow4x^2-16x+12+7\left[\left(4x-3\right)-x\sqrt{4x-3}\right]=0\)

\(\Leftrightarrow4\left(x-1\right)\left(x-3\right)-7\sqrt{4x-3}\left(x-\sqrt{4x-3}\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\left(4-\frac{7\sqrt{4x-3}}{x+\sqrt{4x-3}}\right)=0\)

Cái ngoặc to phía sau \(=\frac{4x-3\sqrt{4x-3}}{MS>0}=\frac{16x^2-36x+27}{\left(4x+3\sqrt{4x-3}\right).MS>0}>0\) cái ngoặc to vô nghiệm

Do đó x = 1 (Thỏa mãn) hoặc x = 3 (thỏa mãn)

Ngắn gọn hơn nhỉ:)


Các câu hỏi tương tự
michelle holder
Xem chi tiết
GHT
Xem chi tiết
hân phúc
Xem chi tiết
Nguyễn Tuấn Kiệt
Xem chi tiết
Cửu Lục Nguyệt
Xem chi tiết
Nguyễn Tuấn Kiệt
Xem chi tiết
Lâm Tinh Thần
Xem chi tiết
Lê Hương Giang
Xem chi tiết
nguyễn bảo châu
Xem chi tiết