Gọi T là tập hợp các giá trị nguyên của m để tập nghiệm của phương trình \(\sqrt{16x+m-4}=4x^2-18x+4-m\) có một phần tử . Tính tổng các phần tử của T
a)Có bao nhiêu giá trị nguyên m để hàm số \(y=\sqrt{x^2-2mx-2m+3}\) có tập xác định là R
b) Gọi S là tập hợp các giá trị m để bất pt \(x^2-2mx+5m-8\le0\) có tập nghiệm là [a;b] sao cho b-a=4. Tổng tất cả phần tử S là
(Em cần lời giải chi tiết ạ! Cảm ơn mọi người)
Câu 1: Tập hợp các giá trị thực của tham số m để phương trình \(\sqrt{x^2+2x+2m}=2x+1\) có hai nghiệm phân biệt là S = (a;b]. Khi đó P = a.b là....
Câu 2: Cho phương trình \(\sqrt{-x^2+4x-3}=\sqrt{2m+3x-x^2}\). Để phương trình có nghiệm thì m ϵ [a;b]. Giá trị \(a^2+b^2=?\)
Câu 3: Biết phương trình \(x^4-3mx^2+m^2+1=0\) có 4 nghiệm phân biệt \(x_1,x_2,x_3,x_4\). Tính M = x1+x2+x3+x4+x1x2x3x4
có bao nhiêu giá trị nguyên của tham số m trên đoạn \([-2020;2020]\) để phương trình \(\left|\sqrt{4x^2-12x+10}-\sqrt{4x^2+20x+74}\right|=m\) có nghiệm
Tất cả các giá trị của tham số m để phương trình \(mx^4-2\left(m-1\right)x^2+\left(m-1\right)m=0\) có một nghiệm là
Trong mp Oxy, cho hai đường thẳng \(d_1:mx+y-1=0\) và \(d_2:x+2y-4=0\). Gọi S là tập hợp tất cả các giả trị thực của m để góc giữa d1 và d2 bằng 45 độ. Tính tổng giá trị phần tử S
Cho phương trình : \(x^4-2\left(m+1\right)x^2+m^2+m+2=0\) tìm tất cả các giá trị của m để phương trình có bốn nghiệm phân biệt lớn hơn -1
Tìm các giá trị của tham số m để phương trình sau có nghiệm thực: \(m\left(x+4\right)\sqrt{x^2+2}=5x^2+8x+24\)