\(\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{c}{b}\right)\left(1+\dfrac{a}{c}\right)=8\)
\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=8abc\)
Áp dụng BĐT Cô-si cho 2 số không âm:
\(\left(a+b\right)\left(a+c\right)\left(b+c\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}=8abc\)
Dấu "=" xảy ra <=> a = b = c
Vậy, △ABC là tam giác đều (đpcm)
Áp dụng bất đẳng thức Cô si ta có:
\(VT=\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{c}{b}\right)\left(1+\dfrac{a}{c}\right)\ge2\sqrt{\dfrac{b}{a}}\cdot2\sqrt{\dfrac{c}{b}}\cdot2\sqrt{\dfrac{a}{c}}=8\sqrt{\dfrac{abc}{abc}}=8=VP\)
Dấu "=" xảy ra khi a = b = c
Mà VT = VP => a = b = c
=> tam giác ABC đều