Câu 1 : B
Câu 2 : C
Câu 3 : C
Câu 4 : D
Câu 5 : A
Câu 6 : D
Câu 9 :
Ta có : \(\left\{{}\begin{matrix}\dfrac{2x+1}{x-2}-\dfrac{3y+4}{y+3}=9\\\dfrac{3x-4}{x-2}+\dfrac{y-1}{y+3}=2\end{matrix}\right.\)
ĐKXĐ : \(\left\{{}\begin{matrix}x\ne2\\y\ne-3\end{matrix}\right.\)
HPT \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2x-4+5}{x-2}-\dfrac{3y+9-5}{y+3}=9\\\dfrac{3x-6+2}{x-2}+\dfrac{y+3-4}{y+3}=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{x-2}+2-3+\dfrac{5}{y+3}=9\\\dfrac{2}{x-2}+3+1+\dfrac{-4}{y+3}=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{x-2}+\dfrac{5}{y+3}=10\\\dfrac{2}{x-2}+\dfrac{-4}{y+3}=-2\end{matrix}\right.\)
- Đặt \(\dfrac{1}{x-2}=a;\dfrac{1}{y+3}=b\) ta được : \(\left\{{}\begin{matrix}5a+5b=10\\2a-4b=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)
- Thay lại ta được : \(\left\{{}\begin{matrix}x-2=1\\y+3=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-2\end{matrix}\right.\)
Vậy ...