Cho tam giác ABC có 3 góc nhọn ( AB<AC) . Các đường cao AD, BE, CF cắt nhau tại H .
a/ Chứng minh: tam giác AEB đồng dạng tam giá AFC, từ đó suy ra AF.AB = AE.AC
b/ Chứng minh: góc AEF = góc ABC
c/ Vẽ DM vuông góc với AB tại M.Qua M vẽ đường thẳng song song với EF cắt AC tại N. Chứng minh: DN vuông góc với AC .
d/ Gọi I là trung điểm của HC. Chứmg minh tam giác FAC đồng dạng với tam giác FHB và FA.FB = FI2 - El2
Cho tam giác ABC vuông tại A có AB=6cm,AC=8cm.Từ B kẻ đường thẳng // với AC;phân giác góc BAC cắt BC tại M và cắt đường thẳng AB tại N a ) Chứng mình tam giác BMN đồng dạng với tam giác CMA b ) chứng minh AB/AC=MN/AN C) từ N kẻ NE vuông góc với AC (E thuộc AC) NE cắt BC tại I tính BI
Cho ▲ABC nhọc đường cao AD, BE và CF cắt nhau tại( D ∈BC;E∈AC; F∈AB). Chứng minh
a. Tam giác ABD đồng dạng tam giác AHF và AF.AB=AH.AD
b.AF.AB=AE.AC và tâm giác AEF đồng dạng Tam giác ABC
c. FC là phân giác của góc EFD và Bc^2=BH.BE+CH.CF
am giác ABC vuông tại A ,AB =6cm,BC=10cm,đường caoAh a) chứng minh tam giác AHB đồng dạng với tam giác CAB,tam giác AHC đồng dạng với tam giác BAC,tam giác AHB đồng dạng với tam giác CHA b) kẻ phân giác góc b cắt AC tại D tính độ dài AD và DC c) kẻ AH cắt BD tại I chứng minh rằng DA/DC=BA/BF
cho tam giác ABC vuông tại A, có AB=5cm, AC=12cm,đường cao AH(H thuộc BC). Tia phân giác của góc ABC cắt AH tại E và cắt AC tại F.
a) Tính độ dài BC,AF,FC
b)Chứng minh tam giác ABF đồng dạng với tam giác HBE
c) C/m tam giác AEF cân
d) C/m AB.FC=BC.AE
Cho tam giác ABC vuông có AB = 9cm , AC = 12cm . Vẽ phân giác BD
a) Tính BD , AD
b) Qua D vẽ đường thẳng vuông góc với BC tại H , cắt tia BA tại E . chứng minh \(\Delta ABC\) đồng dạng \(\Delta HDC\) . Tính diện tích \(\Delta ADE\)
cho tam giác ABC vuông tại A (AB<AC) có đường cao AH (H thuộc BC). Lấy điểm D sao cho H là trung điểm của đoạn thẳng BD. Chứng minh tam giác ABC đồng dạng với tam giác HBA. Qua điểm C kẻ đường thẳng vuông góc với tia AD tại E. Chứng minh AH.CD=CE.AD. Chứng minh tam giác HDE đồng dạng tam giác ADC và BD.AC=2AD.HE. Tia AH cắt tia CE tại F chứng minh AF^2=2BF.AE
Cho tam giác ABC vuông tại A với AB = 3cm AC= 4cm vẽ đường cao AE. a) Chứng minh rằng AABC đồng dạng với AEBA. b) Tia phân giác của góc ABC cắt AC tại F. Tính BF
cho tam giác ABC vuông tại A (AB<AC),đường ca AH(H thuộc BC).
1 CM: tam giác HBA đồng dạng tam giác ABC và BA^2=BH.BC.
2.kẻ phân giác Be cuat góc ABC(E thuộc AC ) , BE cắt AH tại I .CM tam giác HBI đồng dạng tam giác ABE.
3. CM AI=AE