Bài 43:
Ta thấy, \(\leq 0|\frac{3\sin n+4\cos n}{n+1}|\leq \frac{7}{n+1}\)
Mà: \(\lim \frac{7}{n+1}=0\) nên \(\lim\frac{3\sin n+4\cos n}{n+1}=0\)
Đáp án A.
Bài 44:
\(\lim\frac{1+a+a^2+...a^n}{1+b+b^2+...+b^n}=\lim\frac{a^{n+1}-1}{b^{n+1}-1}.\frac{b-1}{a-1}\)
Với $|a|< 1; |b|< 1$ thì khi $n\to \infty$ thì $a^{n+1}\to 0$ và $b^{n+1}\to 0$
Do đó: \(\lim \frac{a^{n+1}-1}{b^{n+1}-1}.\frac{b-1}{a-1}=\frac{b-1}{a-1}\)
Đáp án C
Bài 45:
\(1+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{n(n+1)}=1+\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{(n+1)-n}{n(n+1)}\)
\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...\frac{1}{n}-\frac{1}{n+1}=2-\frac{1}{n+1}\)
Do đó:
\(\lim [1+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{n(n+1)}]=\lim [2-\frac{1}{n+1}]=2-\lim \frac{1}{n+1}=2\)
Đáp án B
Bài 46:
Bằng phương pháp quy nạp, ta dễ dàng CM được công thức sau:\(1^2+2^2+...+n^2=\frac{n(n+1)(2n+1)}{6}\)
Do đó:
\(\lim \frac{1^2+2^2+3^2+...+n^2}{n(n^2+1)}=\lim \frac{n(n+1)(2n+1)}{6n(n^2+1)}=\lim \frac{(n+1)(2n+1)}{6(n^2+1)}\)
\(=\lim \frac{(1+\frac{1}{n})(2+\frac{1}{n})}{6(1+\frac{1}{n^2})}=\frac{2}{6}=\frac{1}{3}\)
Đáp án B
Bài 47:
Bằng quy nạp, ta chứng minh được:
\(1^3+2^3+3^3+...+n^3=\frac{n^2(n+1)^2}{4}\)
Do đó:
\(\lim \frac{1^3+2^3+...+n^3}{n(n^3+1)}=\lim \frac{n^2(n+1)^2}{4n(n^3+1)}=\lim \frac{n(n+1)}{4(n^2-n+1)}=\lim \frac{1+\frac{1}{n}}{4(1-\frac{1}{n}+\frac{1}{n^2})}=\frac{1}{4}\)
Đáp án B
Bài 48:
\(\lim \sqrt{n}(\sqrt{n+1}-\sqrt{n})=\lim \frac{\sqrt{n}[(n+1)-n]}{\sqrt{n+1}+\sqrt{n}}=\lim \frac{\sqrt{n}}{\sqrt{n}+\sqrt{n+1}}\)
\(=\lim \frac{1}{1+\sqrt{1+\frac{1}{n}}}=\frac{1}{1+1}=\frac{1}{2}\)
Đáp án A.
Bài 49:
\(\lim (\sqrt[3]{n^3+1}-\sqrt[3]{n^3+2})=\lim \frac{(n^3+1)-(n^3+2)}{\sqrt[3]{(n^3+1)^2}+\sqrt[3]{(n^3+1)(n^3+2)}+\sqrt[3]{(n^3+2)^2}}\)
\(=\lim \frac{-1}{\sqrt[3]{(n^3+1)^2}+\sqrt[3]{(n^3+1)(n^3+2)}+\sqrt[3]{(n^3+2)^2}}=0\) do \(\sqrt[3]{(n^3+1)^2}+\sqrt[3]{(n^3+1)(n^3+2)}+\sqrt[3]{(n^3+2)^2}\to +\infty \) với $n\to +\infty$
Đáp án D.
Bài 50:
\(u_n=\frac{1}{1.3}+\frac{1}{3.5}+....+\frac{1}{(2n-1)(2n+1)}\)
\(2u_n=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{(2n-1)(2n+1)}\)
\(=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+....+\frac{(2n+1)-(2n-1)}{(2n-1)(2n+1)}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{2n-1}-\frac{1}{2n+1}=1-\frac{1}{2n+1}\)
\(\Rightarrow u_n=\frac{1}{2}-\frac{1}{4n+2}\Rightarrow \lim u_n=\lim (\frac{1}{2}-\frac{1}{4n+2})=\frac{1}{2}\)
Đáp án C.
Bài 51:
\(\lim (\frac{1}{n^2}+\frac{2}{n^2}+...+\frac{n-1}{n^2})=\lim \frac{1+2+3+...+(n-1)}{n^2}=\lim \frac{(n-1)n}{2n^2}=\lim \frac{n-1}{2n}\)
\(\lim (\frac{1}{2}-\frac{1}{2n})=\frac{1}{2}\)
Đáp án B.