Bài 4: Đường tiệm cận

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lương Yến

Giúp em với ạ!

Cho hàm số y=-x+1/x+3 viết phương trình tiếp tuyến . biết tiếp tuyến tạo với hai tiệm cận một tam giác có chu vi bằng 2(2+ căn 2)

Akai Haruma
23 tháng 8 2017 lúc 15:08

Lời giải:

Trước tiên, ta tìm được đồ thị hàm số $y$ có hai tiệm cận:

\(\bullet\) Tiệm cận đứng \(x=0\) (trục tung \(Oy\))

\(\bullet\) Tiệm cận xiên \(y=3-x\) \((d)\)

Xét hàm \(y=-x+\frac{1}{x}+3\Rightarrow y'=-1-\frac{1}{x^2}\)

Gọi \(a\) là hoành độ tiếp điểm. Khi đó, PT tiếp tuyến là:

\(y=\left ( -1-\frac{1}{a^2} \right )(x-a)-a+\frac{1}{a}+3\)

\(\Leftrightarrow \left ( 1+\frac{1}{a^2} \right )x+y-\frac{2}{a}-3=0\) \((m)\)

Gọi \(A=(d)\cap Oy\) thì \(A(0,3)\)

Gọi \(B=(m)\cap Oy\Rightarrow B(0,\frac{2}{a}+3)\)

Gọi \(C=(d)\cap (m)\). PT hoành độ giao điểm là:

\(-\left (1+\frac{1}{a^2}\right)x+\frac{2}{a}+3=3-x\Leftrightarrow \frac{2}{a}=\frac{x}{a^2}\Leftrightarrow x=2a\)

\(\Rightarrow C(2a,3-2a)\)

Do đó, \(AB=\left | \frac{2}{a} \right |\); \(BC=\sqrt{8a^2+\frac{4}{a^2}+8}\); \(AC=2\sqrt{2}|a|\)

Chu vi tam giác:

\(AB+BC+AC=\left |\frac{2}{a}\right|+2\sqrt{2}|a|+\sqrt{8a^2+\frac{4}{a^2}+8}=2(2+\sqrt{2})\)

\(\Leftrightarrow \left | \frac{1}{a} \right |+\sqrt{2}|a|+\sqrt{2a^2+\frac{1}{a^2}+2}=2+\sqrt{2}\)

Áp dụng BĐT Cô -si:

\(\left | \frac{1}{a} \right |+\sqrt{2}|a|\geq 2\sqrt{\sqrt{2}}>\sqrt{2}\)

\(a^2+\frac{1}{a^2}\geq 2\Rightarrow 2a^2+\frac{1}{a^2}+2\geq 4+a^2\geq 4\)

\(\Rightarrow \left | \frac{1}{a} \right |+\sqrt{2}|a|+\sqrt{2a^2+\frac{1}{a^2}+2}>2+\sqrt{2}\)

Do đó PT vô nghiệm, tức là không tồn tại $a$ nên không tồn tại PTTT.


Các câu hỏi tương tự
An Hoài Nguyễn
Xem chi tiết
Lê Huy Hoàng
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Hà QuỳnhAnh
Xem chi tiết
Nguyễn Thùy Dương
Xem chi tiết
Phạm Minh Khánh
Xem chi tiết
nguyễn hoàng lê thi
Xem chi tiết
nguyễn hoàng lê thi
Xem chi tiết
nguyễn hoàng lê thi
Xem chi tiết