Trong mặt phẳng tọa độ oxy, đường thẳng (d) y=2x-m+3 và Parabol (P) y=x2.
a) Tìm m để đường thẳng (d) đi qua A(1;0)
b) Tìm m để dường thẳng (d) và Parabol (P) cắt nhau tại hai điểm phân biệt có hoành độ lần lượt là x1, x2 thỏa mãn x12 -2x2 +x1.x2 = -12
Vẽ đồ thị của hai hàm số \(y=\dfrac{1}{4}x^2\) và \(y=-\dfrac{1}{4}x^2\) trên cùng một hệ trục tọa độ.
a) Qua điểm B(0;4) kẻ đường thẳng song song với trục Ox. Nó cắt đồ thị của hàm số \(y=\dfrac{1}{4}x^2\) tại hai điểm M và M'. Tìm hoành độ của M và M'.
b) Tìm trên đồ thị của hàm số \(y=-\dfrac{1}{4}x^2\) điểm N có cùng hoành độ với M, điểm N' có cùng hoành độ với M, điểm N' có cùng hoành độ với M'. Đường thẳng NN' có song song với Ox không? Vì sao? Tìm tung độ của N và N' bằng hai cách:
- Ước lượng trên hình vẽ.
- Tính toán theo công thức.
Cho parabol (P) \(y=\dfrac{1}{2}x^2\) và điểm A, B thuộc (P) có hoành độ lần lượt là: -1, 2. Đường thẳng (d) phương trình y=mx+n
a) Tìm tọa độ điểm A, B. Tìm m, n biết (d) đi qua A và B.
b) Tính độ dài đường cao OH của tam giác OAB (điểm O là gốc tọa độ)
Xác định hàm số y=ax+b biết đồ thị cắt trục tại điểm có tung độ=3 và cắt trục hoành tại điểm có hoành độ =-2
Cho hai đường thẳng x + y = -1 (d1) và mx + y = 1 (d2). Tìm m để hai đường thẳng (d1) và (d2) cắt nhau tại một điểm thuộc trục hoành
Cho hàm số y=ax+b(d).Xác định a và b trong các trường hợp sau:
a)(d) song song với y=3x và cắt trục tung tại điểm có tung độ bằng 2
b)(d) song song với đường thẳng y=-4x+1 và cắt trục hoành tại điểm có hoành độ bằng -1
c)(d) vuông góc với đường thẳng y=-5x+1 và đi qua A(5;2)
d)(d) đi qua hai điểm A(1;2) và B(-2;-7)
e)(d) có hệ số góc là 3 và đi qua điểm nằm trên đường thẳng y=2x+1 có hoành độ bằng -1
f)(d) cắt (P) y=x^2 tạu hai điểm có hoành độ -2;1
Cho hai hàm số y = x2 và y = 2x + 3.
a. Tìm toạ độ giao điểm của hai đồ thị (A, B).
b. Tính diện tích tam giác OAB.
c. Gọi C và D lần lượt là hình chiếu vuông góc của của A, B trên trục hoành, tính diện tích tứ giác ABCD.
Trong mp tọa độ Oxy cho (P): y =x^2, đg thẳng (d): y= 2mx - 2m +3 (m là tham số)
a. Tìm m để (d) đi qua điểm M (2;5)
b. CM (d) và (P) cắt nhau tại 2 điểm pbiệt với mọi m. Gọi y1, y2 là các tung độ giao điểm của (d) và (P). Tìm m sao cho: y1 + y2 < 9