Chương 3: NGUYÊN HÀM. TÍCH PHÂN VÀ ỨNG DỤNG

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Ngọc Thúy Vy

giúp em mấy bài nguyên hàm với ạ. huhu
1) cho f(x)=8sin bình(x+pi/12) một nguyên hàm F(x) của f(x) thỏa F(0)=8 là
A.4x+2sin(2x+pi/6)+9
B.4x-2sin(2x+pi/6)-9
C.4x+2sin(2x+pi/6)+7
D.4x-2sin(2x+pi/6)+7

2)cho f(x)=x*(e mũ -x) một nguyên hàm F(x) của f(x) thỏa F(0)=1 là
A.-(x+1) *(e mũ -x)+1
B.-(x+1)*(e mũ -x)+2
C.(x+1)*(e mũ -x)+1
D.(x+1)*(e mũ -x)+2

e cần bài giải chi tiết ạ. anh chị giúp e với ạ
Akai Haruma
31 tháng 1 2017 lúc 13:39

Lời giải:

Bài 1:

Ta nhớ công thức \(\sin^2x=\frac{1-\cos 2x}{2}\). Áp dụng vào bài toán:

\(F(x)=8\int \sin^2\left(x+\frac{\pi}{12}\right)dx=4\int \left [1-\cos \left(2x+\frac{\pi}{6}\right)\right]dx\)

\(\Leftrightarrow F(x)=4\int dx-4\int \cos \left(2x+\frac{\pi}{6}\right)dx=4x-2\int \cos (2x+\frac{\pi}{6})d(2x+\frac{\pi}{6})\)

\(\Leftrightarrow F(x)=4x-2\sin (2x+\frac{\pi}{6})+c\)

Giải thích 1 chút: \(d(2x+\frac{\pi}{6})=(2x+\frac{\pi}{6})'dx=2dx\)

\(F(0)=8\Rightarrow -1+c=8\Rightarrow c=9\)

\(\Rightarrow F(x)=4x-2\sin (2x+\frac{\pi}{6})+9\)

Câu 2:

Áp dụng nguyên hàm từng phần như bài bạn đã đăng:

\(\Rightarrow F(x)=-xe^{-x}-e^{-x}+c\)

\(F(0)=1\Rightarrow -1+c=1\Rightarrow c=2\)

\(\Rightarrow F(x)=-e^{-x}(x+1)+2\), tức B là đáp án đúng


Các câu hỏi tương tự
Nguyễn Ngọc Thúy Vy
Xem chi tiết
Phạm Lợi
Xem chi tiết
AllesKlar
Xem chi tiết
Nguyễn Kiều Hạnh
Xem chi tiết
haudreywilliam
Xem chi tiết
Bùi Quỳnh Hương
Xem chi tiết
Nguyenthithanhnhu
Xem chi tiết
Tô Cường
Xem chi tiết
Nguyễn Thái Quân
Xem chi tiết