Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn huyền my

giúp em làm bài toán này với

cho 3 số a,b,c >0 thỏa mãn a+b+c=3 Cmr a/(1+b2) +b/(1+c2) +c/(1+a2)>= 3/2

Akai Haruma
31 tháng 1 2017 lúc 2:09

Lời giải:

Đặt \(A=\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\)

Ta có \(A=(a-\frac{ab^2}{1+b^2})+(b-\frac{bc^2}{1+c^2})+(c-\frac{ca^2}{1+a^2})=3-\left ( \frac{ab^2}{1+b^2}+\frac{bc^2}{1+c^2}+\frac{ca^2}{1+a^2} \right )\)

Áp dụng bất đẳng thức AM-GM:

\(A\geq 3-\left ( \frac{ab^2}{2b}+\frac{bc^2}{2c}+\frac{ca^2}{3a} \right )=3-\frac{1}{2}(ab+bc+ac)\)

Cũng theo AM-GM

\(9=(a+b+c)^2\geq 3(ab+bc+ac)\Rightarrow ab+bc+ac\leq 3\)

\(\Rightarrow A\geq 3-\frac{3}{2}=\frac{3}{2}\)

Dấu $=$ xảy ra khi \(a=b=c=1\)


Các câu hỏi tương tự
Ngô Thành Chung
Xem chi tiết
Rosie
Xem chi tiết
Thảo Vi
Xem chi tiết
thảo phương
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Thảo Vi
Xem chi tiết
oooloo
Xem chi tiết
dbrby
Xem chi tiết