Chương 4: SỐ PHỨC

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nhi Uyênn

giúp em câu 30,31,33,34 với mấy anh chị ơi huhu

giải dúp em cụ thể và dễ hiểu với ạ. do em mới học phần này nên hơi khó hiểu..Bài tập Toán

Akai Haruma
6 tháng 3 2017 lúc 8:31

Câu 30:

Để ý \((1+i)^2=2i\)\((1-i)(1+i)=2\) nên để cho đỡ vất vả, ta nhân cả hai vế của PT với \(1+i\). Khi đó thu được:

\((2z-1)(2i)+(\overline{z}+1).2=(2-2i)(1+i)=2(1-i)(1+i)=4\)

Khai triển và rút gọn:

\(\Leftrightarrow 2zi-i+\overline{z}=1\)

Đặt \(z=a+bi(a,b\in\mathbb{R})\). \(\Rightarrow \overline{z}=a-bi\)

\(\Rightarrow 2i(a+bi)-i+a-bi=1\Leftrightarrow (a-2b)+i(2a-b-1)=1\)

\(\Rightarrow\left\{{}\begin{matrix}a-2b=1\\2a-b-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\dfrac{1}{3}\\b=\dfrac{-1}{3}\end{matrix}\right.\)

\(\Rightarrow |z|=\sqrt{a^2+b^2}=\frac{\sqrt{2}}{3}\). Đáp án D.

Bài 31: Để \(z.z'\in\mathbb{R}\) nghĩa là phần ảo của nó phải bằng $0$

Khai triển:

\(z.z'=(m+3i)[2-(m+1)i]=A+i(6-m^2-m)\) với \(A\in\mathbb{R}\)

Lưu ý: Bài toán muốn thỏa điều kiện phần ảo bằng 0 thì ta sẽ chỉ quan tâm đến phần ảo, do đó mình mới viết gọn hết các phần thực thành 1 cụm $A$

Phần ảo bằng \(0\Leftrightarrow 6-m^2-m=0\Leftrightarrow m=2\) hoặc \(m=-3\)

Đáp án D.

Akai Haruma
6 tháng 3 2017 lúc 8:46

Câu 33: Tương tự như câu 30

Đặt \(z=a+bi(a,b\in\mathbb{R})\Rightarrow\overline{z}=a-bi\)

Khi đó \(z+2\overline{z}=2-4i\Rightarrow a+bi+2(a-bi)=2-4i\)

\(\Leftrightarrow 3a-bi=2-4i\Rightarrow \)

\(\Rightarrow \left\{\begin{matrix} 2a=3\\ b=4\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=\frac{2}{3}\\ b=4\end{matrix}\right.\Rightarrow |z|=\sqrt{a^2+b^2}=\frac{2\sqrt{37}}{3}\)

Đáp án C

Câu 34:

Ta có \((iz)(\overline{z}-2+3i)=0\Leftrightarrow \)\(\left[{}\begin{matrix}iz=0\\\overline{z}-2+3i=0\end{matrix}\right.\)

Ở TH1 vì \(i\neq 0\Rightarrow z=0\)

Ở TH2: \(\overline{z}-2+3i=0\Leftrightarrow \overline{z}=2-3i\rightarrow z=2+3i\)

(Nhớ rằng nếu số phức $z$ có dạng $a+bi$ thì \(|z|=a-bi\) và ngược lại)

Đáp án A.

Mình nghĩ phần số phức là phần đơn giản nhất trong chương trình 12 vì nó giống như kiểu giải PT thông thường thôi. Thiết nghĩ bạn nên ôn thật chắc kiến thức lý thuyết cơ bản trong sgk. Cam đoan rằng khi bạn nắm chắc kiến thức lý thuyết về số phức thì sẽ cảm thấy nó dễ.


Các câu hỏi tương tự
Lành Lương
Xem chi tiết
An Bình
Xem chi tiết
Nguyễn Ngọc Thúy Vy
Xem chi tiết
Nguyễn Ngọc Thúy Vy
Xem chi tiết
Xem chi tiết
Nhi Uyênn
Xem chi tiết
Hoang Khoi
Xem chi tiết
Kem Móm
Xem chi tiết
Đăng Nguyễn
Xem chi tiết