<=> \(x^2\left(1+2y\right)+1-y^2\)
<=> \(x^2\left(1+2y\right)+\left(1-y^2\right)=x^2\left(1+2y\right)+\left(1-y\right)\left(1+y\right)\)
=> \(x=\pm\dfrac{\sqrt{\left(y+1\right)\left(y-1\right)\left(1+2y\right)}}{1+2y}\)
=> \(y=x^2\pm\sqrt{\left(x^2-x+1\right)\left(x^2-x+1\right)}\)
<=> x2(1+2y)+1−y2x2(1+2y)+1−y2
<=> x2(1+2y)+(1−y2)=x2(1+2y)+(1−y)(1+y)x2(1+2y)+(1−y2)=x2(1+2y)+(1−y)(1+y)
=>


