\(\dfrac{-5x+7-2x+3-3x+4}{2-x}=\dfrac{-10x+14}{2-x}=\dfrac{-2\left(5x-7\right)}{2-x}=\dfrac{2\left(5x-7\right)}{x-2}.\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
\(\dfrac{-5x+7-2x+3-3x+4}{2-x}=\dfrac{-10x+14}{2-x}=\dfrac{-2\left(5x-7\right)}{2-x}=\dfrac{2\left(5x-7\right)}{x-2}.\)
Dùng quy tắc đổi dấu rồi thực hiện các phép tính :
a) \(\dfrac{4x+13}{5x\left(x-7\right)}-\dfrac{x-48}{5x\left(7-x\right)}\)
b) \(\dfrac{1}{x-5x^2}-\dfrac{25x-15}{25x^2-1}\)
5. a) \(\dfrac{4x+13}{5x\left(x-7\right)}-\dfrac{x-48}{5x\left(7-x\right)};\) b) \(\dfrac{1}{x-5x^2}-\dfrac{25x-15}{25x^2-1}\)
Làm tính trừ phân thức :
a) \(\dfrac{3x-2}{2xy}-\dfrac{7x-4}{2xy}\)
b) \(\dfrac{3x+5}{4x^3y}-\dfrac{5-15x}{4x^3y}\)
c) \(\dfrac{4x+7}{2x+2}-\dfrac{3x+6}{2x+2}\)
d) \(\dfrac{9x+5}{2\left(x-1\right)\left(x+3\right)^2}-\dfrac{5x-7}{2\left(x-1\right)\left(x+3\right)^2}\)
e) \(\dfrac{xy}{x^2-y^2}-\dfrac{x^2}{y^2-x^2}\)
f) \(\dfrac{5x+y^2}{x^2y}-\dfrac{5y-x^2}{xy^2}\)
g)\(\dfrac{x}{5x+5}-\dfrac{x}{10x-10}\)
h) \(\dfrac{x+9}{x^2-9}-\dfrac{3}{x^2+3x}\)
Đố :
Đố em tính nhanh được tổng sau :
\(\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}\)
a) Chứng minh :
\(\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{1}{x\left(x+1\right)}\)
b) Đố :
Đố em tính nhẩm được tổng sau :
\(\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{x+5}\)
a)\(\dfrac{2}{x+2}-\dfrac{1}{x+3}+\dfrac{2x+5}{\left(x+2\right)\left(x+3\right)}\)
b)\(\dfrac{2}{x+1}-\dfrac{1}{x+5}+\dfrac{2x+6}{\left(x+5\right)\left(x+1\right)}\)
c)\(\dfrac{-6}{x^2-9}-\dfrac{1}{x+3}+\dfrac{3}{x-3}\)
d)\(\dfrac{x}{x-2}-\dfrac{x}{x+2}+\dfrac{8}{x^2-4}\)
1) thực hiện phép tính
a) \(\dfrac{x-3}{4x+4}-\dfrac{x-1}{6x-30}\)
b) \(\dfrac{1}{x-5x^2}-\dfrac{25x-15}{25x^2-1}\)
c) \(\dfrac{x+9y}{x^2-9y^2}-\dfrac{3y}{x^2-3xy}\)
d) \(\dfrac{3x+1}{\left(x-1\right)^2}-\dfrac{1}{x+1}-\dfrac{x+3}{1-x^2}\)
e) \(\dfrac{3\left(x-2\right)}{x^2-2x+1}-\dfrac{6}{x^2-1}-\dfrac{3x-2}{1-x^2}\)
a). Chứng minh: \(\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{1}{x\left(x+1\right)}\)
b). Tính nhẩm tổng sau:
\(\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{x+5}\)
Thực hiện các phép tính :
a) \(\dfrac{x+1}{x-3}-\dfrac{1-x}{x+3}-\dfrac{2x\left(1-x\right)}{9-x^2}\)
b) \(\dfrac{3x+1}{\left(x-1\right)^2}-\dfrac{1}{x+1}+\dfrac{x+3}{1-x^2}\)