\(\Leftrightarrow x^4-a^4+a^2x^2-a^4=0\)
\(\Leftrightarrow\left(x^2-a^2\right)\left(x^2+a^2\right)+a^2\left(x^2-a^2\right)=0\)
\(\Leftrightarrow\left(x^2-a^2\right)\left(x^2+2a^2\right)=0\)
\(\Leftrightarrow x=\pm a\)
\(\Leftrightarrow x^4-a^4+a^2x^2-a^4=0\)
\(\Leftrightarrow\left(x^2-a^2\right)\left(x^2+a^2\right)+a^2\left(x^2-a^2\right)=0\)
\(\Leftrightarrow\left(x^2-a^2\right)\left(x^2+2a^2\right)=0\)
\(\Leftrightarrow x=\pm a\)
Cho tham số f(x)=\(\left[{}\begin{matrix}\frac{\sqrt{x^2+4}-2}{x^2}khix\ne0\\2a-\frac{5}{4}khix=0\end{matrix}\right.\)
Tìm giá trụ thực của tham số a để hàm số f(x) liên tục tai x=0
Bài tập 1: Giải phương trình trên tập hợp C.
a, \(X^2-3x-2=0\)
b, \(x^4-5x^2+6=0\)
c, \(-x^2+4x+5=0\)
{-3x + 2.[45-x-3(3x+7)-2x]+4 x}=55-103-57:[-2.(2x-1)2-(-9)^0]=-106
các bạn giải giúp mình mấy câu bất đẳng thức này với
1) tìm GTLN
a) y=(6x+3)(5-2x) \(\dfrac{-1}{2}\le x\le\dfrac{5}{2}\)
b)y=\(\dfrac{x}{x^2+2}\) x>0
2)cho 3 số thực a,b,c thỏa mãn \(a\ge9,b\ge4,c\ge1\). CM :\(ab\sqrt{c-1}+bc\sqrt{a-9}+ca\sqrt{b-4}\le\dfrac{11abc}{12}\)
3)cho x,y>0 thỏa mãn x+y=2 . CM
a)xy(x2+y2)\(\le2\)
b)x3y3(x3+y3)\(\le2\)
4) x,y là các số thực thỏa mãn \(0\le x\le3,0\le y\le4\)
tìm GTLN A= (3-x)(4-y)(2x+3y)
5) biết x,y,z,u\(\ge0\)và 2x+xy+z+yzu=1
tìm GTLN của P=x2y2z2u
6)cho a,b,c>0 và a+b+c=3 .CMR:\(a\sqrt{b^3+1}+b\sqrt{c^3+1}+c\sqrt{a^3+1}\le5\)
7) cho 3 số dương x,y,z có tổng bằng 1 .CMR : \(\sqrt{\dfrac{xy}{xy+z}}+\sqrt{\dfrac{yz}{yz+x}}+\sqrt{\dfrac{xz}{xz+y}}\le\dfrac{3}{2}\)
8)cho 3 số dương a,b,c có tổng bằng 3 .
tìm GTLN của S=\(\dfrac{bc}{\sqrt{3a+bc}}+\dfrac{ca}{\sqrt{3b+ca}}+\dfrac{ab}{\sqrt{3c+ab}}\)
ko cần làm chi tiết lắm chỉ cần hướng dẫn là đc zùi
Tìm x :
\(\frac{x-2}{5}=\frac{2x-3}{4}\)
\(\frac{3}{2\left(x-1\right)}=\frac{4}{5\left(x-2\right)}\)
\(\frac{x-5}{x-6}=\frac{x-1}{x+2}\)
Số nghiệm thực của phương trình 4x-1 + 2x+3 -4=0
Bài tập 2: Tính thể tích vật thể được giới hạn.
a, \(y=cosx,y=0,x=\pi,x=0\)
b, \(y=-x^2+2x+3,y=\dfrac{1}{2}x,x+\dfrac{1}{2}\)
c, \(y=2-x-x^2,y=0\)
Câu 1: Rút gọn biểu thức \(I=ln\left(x\right)^2+ln\left(x\right)\) ta được:
a) \(I=2ln\left(x\right)\)
b) \(I=ln\left(xe\right)^{ln\left(x\right)}\)
c) \(I=ln\left(x^{lnx}e\right)\)
d) \(I=ln\left(x^{ln\left(x\right)}.x\right)\)
Câu 2: Hàm số nào sau đây không có cự trị:
a) \(y=\frac{2+x^2}{x^2-4}\)
b) \(y=x^8+x^6+2x^4-4x^2-x+1\)
c) \(y=sin\left(cos\left(x\right)\right)\)
d) \(y=x^3+2x^2+\sqrt{x}\)
Câu 3: Cho đồ thị \(\left(C\right):\) \(y=\frac{m-x}{x+1}\) và đường thẳng \(\left(d\right):\) \(y=2x+m\) . Hỏi m thuộc khoảng nào để thoả mản đường thẳng \(\left(d\right)\) cắt đồ thị \(\left(C\right)\) tại hai điểm A,B sao cho \(OA=OB\) với \(O\) là gốc toạ độ.
a) \(\left(—\infty;-2\right)\)
b)\(\left[-2;4\right]\)
c) \(\left(4;+\infty\right)\)
d) Không tồn tại giá trị m
Câu 4: Giả sử 2 cặp nghiệm của hệ phương trình \(\left\{{}\begin{matrix}2ln^2\left(x\right)+3ln^2\left(y\right)=5\\ln\left(x\right)+2ln\left(y^2\right)=3\end{matrix}\right.\) đều có dạng \(\left(e\sqrt[a]{e^{18}};\sqrt[b]{e^{13}}\right)=\left(x_1;y_1\right)\) và \(\left(e^c;e^d\right)=\left(x_2;y_2\right)\). Mệnh đề nào sau đây là sai:
a) \(a-b+c+d=0\)
b) \(c=\frac{1}{d}\)
c) \(\left(a-b\right)\left(c+d\right)=0\)
d) \(a+b=35c^2+35d\)
Câu 5: Cho \(m\) là các số nguyên thuộc \(\left[0;10\right]\). Các tấc cả bao nhiêu giá trị \(m\) để phương trình \(2^{mx}-mx^2=0\) có 3 nghiệm phân biệt.
a) 0
b) 1
c) 2
d) Đáp án khác
Bài tập 3: Giải phương trình.
a, \(\log_22x-9.\log_8x=4\)
b, \(5^x-24=5^{2-x}\)