Lời giải:
Đặt \(\sqrt{x^3+2x+1}=a\Rightarrow x^3+2x+1=a^2\Rightarrow x^2+3x+2=a^2+x+1\)
PT trở thành:
\(a^2+x+1=(x+2)a\)
\(\Leftrightarrow (a^2-2a+1)+(x-xa)=0\)
\(\Leftrightarrow (a-1)^2-x(a-1)=0\)
\(\Leftrightarrow (a-1)(a-1-x)=0\) \(\Rightarrow \left[\begin{matrix} a=1\\ a=x+1\end{matrix}\right.\)
Nếu \(a=1\Rightarrow x^3+2x=0\Leftrightarrow x(x^2+2)=0\Rightarrow x=0\)
Nếu \(a=x+1\Rightarrow x^3+2x+1=a^2=(x+1)^2=x^2+2x+1\)
\(\Rightarrow x^3=x^2\Leftrightarrow x^2(x-1)=0\Rightarrow \left[\begin{matrix} x=0\\ x=1\end{matrix}\right.\)
Vậy.......