ĐKXĐ: x\(\ne2\), \(x\ne1\)
\(\dfrac{2x-5}{x-2}-\dfrac{3x-5}{x-1}=-1\)
<=> \(\dfrac{\left(2x-5\right)\left(x-1\right)}{\left(x-1\right)\left(x-2\right)}-\dfrac{\left(3x-5\right)\left(x-2\right)}{\left(x-1\right)\left(x-2\right)}=\dfrac{-1.\left(x-1\right)\left(x-2\right)}{\left(x-1\right)\left(x-2\right)}\)
=> 2x2-2x-5x+5-3x2+6x+5x-10= -x2+2x-2+x
<=> 2x2-2x-5x+5-3x2+6x+5x-10+x2-2x+2-x=0
<=> x-3=0
<=> x=3 (thỏa mãn ĐKXĐ)
Vậy S=\(\left\{3\right\}\)