Ta có |x(x+1)| = |x| |x+1|
Suy ra |x+1| = |x| |x+1|
Suy ra x = +-1
Ta có |x(x+1)| = |x| |x+1|
Suy ra |x+1| = |x| |x+1|
Suy ra x = +-1
Tìm x :
\(3x\cdot\left(x-2\right)-2x\cdot\left(2x-1\right)=\left(1-x\right)\cdot\left(1+x\right)\)
\(\left(5x+3\right)\cdot\left(3x-5\right)-\left(x-2\right)\cdot\left(2x+1\right)=6x\cdot\left(3x+1\right)-x^2\)
\(\left(2x-1\right)\cdot\left(2x+1\right)-3\cdot\left(x-1\right)=\left(1-4x\right)\cdot\left(1-x\right)\)
\(\left(2x^2+1\right)\cdot\left(3x^2-1\right)-\left(4x^2-3\right)\cdot\left(x^2+1\right)=x\cdot\left(2x^3+1\right)\)
GIÚP MK ĐI MAI MK PHẢI NỘP RÙI !
Tìm x biết:
a) \(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x+5\right)=x+2-\left(x-5\right)\)
b) \(\left(x+1\right)\left(x+2\right)\left(x+5\right)-x^3-8x^2=27\)
Giải phương trình:\(\frac{\left(2018-x\right)^2+\left(2018-x\right)\left(x-2019\right)+\left(x-2019\right)^2}{\left(2018-x\right)^2-\left(2018-x\right)\left(x-2019\right)+\left(x-2019\right)^2}=\frac{19}{49}\)
Chứng tỏ rằng các đa thức sau không phụ thuộc vào biến:
a) \(x\left(2x+1\right)-x^2\left(x+2\right)+\left(x^3-x+3\right)\)
b) \(4\left(x-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x^2\left(x-1\right)\)
c) \(\left(x^2+2x+3\right)\left(3x^2-2x+1\right)-3x^2\left(x^2+2\right)-4x\left(x^2-1\right)\)
thực hiện phép tính
a/ \(\left(x-2\right)^3-x\left(x+1\right)\left(x-1\right)+6x\left(x-3\right)\)
b/ \(\left(x-2\right)\left(x^2-2x+4\right)\left(x+2\right)\left(x^2+2x+4\right)\)
Rút gọn biểu thức:
A=\(2x\left(x-2\right)-x\left(2x-3\right)\)
B=\(\left(x-1\right)\left(2x+1\right)-\left(x^2-2x-1\right)\)
C=\(\left(x+y\right)\left(x^2-xy+y^2\right)-x^3\)
D=\(\left(12x-3\right)\left(x+4\right)-x\left(2x+7\right)\)
E=\(\left(2x+y\right)\left(4x^2-2xy+y^2\right)\)
Giải phương trình: \(\dfrac{2}{a\left(b-x\right)}-\dfrac{2}{b\left(b-x\right)}=\dfrac{1}{a\left(c-x\right)}-\dfrac{1}{b\left(c-x\right)}\) (a. b, c là hằng, a ≠ 0, b ≠ 0)
Tìm x,y biết:
a) \(-2x\left(10x-3\right)+5x\left(4x+1\right)=25\)
b) \(y\left(5-2y\right)+2y\left(y-1\right)=15\)
c) \(x\left(x+1\right)-\left(x+1\right)=35\)
d) \(x\left(x^2+x+1\right)-x^2\left(x+1\right)=0\)
Rút gọn các biểu thức sau :
a) \(x\left(2x^2-3\right)-x^2\left(5x+1\right)+x^2\)
b) \(3x\left(c-2\right)-5x\left(1-x\right)-8\left(x^2-3\right)\)
c) \(\dfrac{1}{2}x^2\left(6x-3\right)-x\left(x^2+\dfrac{1}{2}\right)+\dfrac{1}{2}\left(x+4\right)\)