ĐKXD: ∀x
Ta có \(\dfrac{x^{2^{ }}+2x+1}{x^2+2x+2}\) + \(\dfrac{x^2+2x+2}{x^2+2x+3}\) = \(\dfrac{7}{6}\)
Đặt x2 + 2x + 2 là a (a ∈ Q) Ta có phương trình mới ẩn a:
\(\dfrac{a-1}{a}+\dfrac{a}{a+1}\) = \(\dfrac{7}{6}\)
⇔ \(\dfrac{6\left(a-1\right)\left(a+1\right)}{6a\left(a+1\right)}\)+\(\dfrac{6a^2}{6a\left(a+1\right)}\) = \(\dfrac{7}{6}\)
⇔\(\dfrac{6\left(a^2-1\right)+6a^2}{6a\left(a+1\right)}\) = \(\dfrac{7a\left(a+1\right)}{6a\left(a+1\right)}\)
Suy ra: 6a2 - 6 + 6a2 = 7a2 + 7a
⇔ 12a2 - 6 - 7a2 - 7a
⇔ 5a2 - 7a - 6 = 0
⇔5a2 - 10a + 3a - 6 = 0
⇔5a( a - 2 ) + 3( a - 2 ) = 0
⇔ (5a + 3)(a - 2) = 0
⇔\(\left[{}\begin{matrix}a-2=0\\5a+3=0\end{matrix}\right.\) ⇔\(\left[{}\begin{matrix}a=2\\a=-0,6\end{matrix}\right.\)
Với a = 2 thì:
x2 + 2x + 2 = 2 ⇔ x2 + 2x = 0
⇔ x(x + 2) = 0 ⇔ \(\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Với a = -0,6 thì:
x2 + 2x + 2 = -0,6 ⇔ x2 + 2x + 1 = -1,6
⇔ (x + 1)2 = -1,6 (Vô lí vì (x + 1)2 ≥ 0)
Vậy S ∈ \(\left\{0;-2\right\}\)