điều kiện \(x\ne-2\)
\(\dfrac{\sqrt{4x^2+7x-2}}{x+2}=\sqrt{2}\Leftrightarrow\sqrt{4x^2+7x-2}=\sqrt{2}\left(x+2\right)\)
\(\Leftrightarrow4x^2+7x-2=2x^2+8x+8\Leftrightarrow2x^2-x-10=0\)
\(2x^2+4x-5x-10=0\Leftrightarrow2x\left(x+2\right)-5\left(x+2\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\x+2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\left(tmđk\right)\\x=-2\left(loại\right)\end{matrix}\right.\)
vậy \(x=\dfrac{5}{2}\)
Đk: \(\left[{}\begin{matrix}x< -2\\x\ge\dfrac{1}{4}\end{matrix}\right.\) (*)
Với đk trên, pt
\(\Leftrightarrow\dfrac{\sqrt{\left(x+2\right)\left(4x-1\right)}}{x+2}=\sqrt{2}\)
\(\Leftrightarrow\sqrt{\dfrac{4x-1}{x+2}}=\sqrt{2}\)
\(\Leftrightarrow\dfrac{4x-1}{x+2}=2\)
\(\Leftrightarrow4x-1=2x+4\)
\(\Leftrightarrow x=\dfrac{5}{2}\)
So với đk (*): \(x=\dfrac{5}{2}\)
Vậy tập nghiệm của pt là \(S=\left\{\dfrac{5}{2}\right\}\)