giải pt
a) \(x+\sqrt{4-x^2}-3x\sqrt{4-x^2}=2\)
b) \(2\left(\sqrt{4-x^2}+4\right)\left(\sqrt{x+2}+\sqrt{2-x}\right)-5=0\)
c) \(\left(\sqrt{x^2-4}-x+1\right)\left(\sqrt{x-2}+\sqrt{x+2}\right)+2=0\)
d) \(\sqrt{x+2}-\sqrt{x-1}=\frac{6}{\sqrt{x^2+x-2}-x}\)
e) \(\frac{2}{\sqrt{x-1}+\sqrt{3-x}}=1+\sqrt{3+2x-x^2}\)
a/ ĐKXĐ: \(-2\le x\le2\)
Đặt \(x+\sqrt{4-x^2}=a\Rightarrow a^2=4+2x\sqrt{4-x^2}\Rightarrow x\sqrt{4-x^2}=\frac{a^2-4}{2}\)
\(\Rightarrow a-\frac{3\left(a^2-4\right)}{2}=2\)
\(\Leftrightarrow-3a^2+2a+8=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-\frac{4}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\sqrt{4-x^2}=2\\x+\sqrt{4-x^2}=-\frac{4}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{4-x^2}=2-x\\3\sqrt{4-x^2}=-4-3x\left(x\le-\frac{4}{3}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4-x^2=x^2-4x+4\\12\left(4-x^2\right)=9x^2+24x+16\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2-4x=0\\21x^2+24x-32=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=\frac{-12+4\sqrt{51}}{2}\left(l\right)\\x=\frac{-12-4\sqrt{51}}{2}\end{matrix}\right.\)
Mấy câu còn lại và bài kia tầm 30ph nữa sẽ làm, bận chút xíu việc
b/ ĐKXĐ: \(-2\le x\le2\)
\(\Leftrightarrow\left(2\sqrt{4-x^2}+4+4\right)\left(\sqrt{x+2}+\sqrt{2-x}\right)-5=0\)
Đặt \(\sqrt{x+2}+\sqrt{2-x}=a>0\Rightarrow a^2=4+2\sqrt{4-x^2}\)
\(\Rightarrow\left(a^2+4\right)a-5=0\)
\(\Leftrightarrow a^3+4a-5=0\Leftrightarrow\left(a-1\right)\left(a^2+a+5\right)=0\)
\(\Rightarrow a=1\Rightarrow\sqrt{x+2}+\sqrt{2-x}=1\)
\(\Leftrightarrow4+2\sqrt{4-x^2}=1\Rightarrow2\sqrt{4-x^2}=-3\)
Vậy pt vô nghiệm
Thật ra bài này có thể biện luận vô nghiệm ngay từ đầu:
\(\sqrt{x+2}+\sqrt{2-x}\ge\sqrt{x+2+2-x}=2\)
\(2\left(\sqrt{4-x^2}+4\right)\ge2.4=8\)
\(\Rightarrow VT>8.2-5=11>0\) nên pt vô nghiệm
c/ ĐKXĐ: \(x\ge2\)
\(\Leftrightarrow\left(\sqrt{x^2-4}-x+1\right)\left(\sqrt{x-2}+\sqrt{x+2}\right)=-2\)
Do \(\sqrt{x+2}>\sqrt{x-2}\Rightarrow\sqrt{x+2}-\sqrt{x-2}\ne0\)
Nhân cả 2 vế của pt với \(\sqrt{x+2}-\sqrt{x-2}\) và rút gọn ta được:
\(4\left(\sqrt{x^2-4}-x+1\right)=-2\left(\sqrt{x+2}-\sqrt{x-2}\right)\)
Đặt \(\sqrt{x+2}-\sqrt{x-2}=a>0\)
\(\Rightarrow a^2=2x-2\sqrt{x^2-4}\Rightarrow\sqrt{x^2-4}-x=-\frac{a^2}{2}\)
Phương trình trở thành:
\(4\left(-\frac{a^2}{2}+1\right)=-2a\)
\(\Leftrightarrow-a^2+2=-a\Leftrightarrow a^2-a-2=0\Rightarrow\left[{}\begin{matrix}a=-1\left(l\right)\\a=2\end{matrix}\right.\)
\(\Rightarrow\sqrt{x+2}-\sqrt{x-2}=2\Leftrightarrow\sqrt{x+2}=2+\sqrt{x-2}\)
\(\Leftrightarrow x+2=x+2+4\sqrt{x-2}\)
\(\Rightarrow4\sqrt{x-2}=0\Rightarrow x=2\)
d/ ĐKXĐ: \(x\ge1\) ; \(x\ne2\)
Đặt \(\sqrt{x+2}-\sqrt{x-1}=a>0\)
\(\Rightarrow a^2=2x+1-2\sqrt{x^2+x-2}\Rightarrow\sqrt{x^2+x-2}-x=\frac{1-a^2}{2}\)
Phương trình trở thành:
\(a=\frac{6}{\frac{1-a^2}{2}}\Leftrightarrow a\left(1-a^2\right)=12\)
\(\Leftrightarrow a^3-a+12=0\)
Bạn kiểm tra lại đề, pt này ko giải được
e/ ĐKXĐ: \(1\le x\le3\)
Đặt \(\sqrt{x-1}+\sqrt{3-x}=a\Rightarrow a^2=2+2\sqrt{3+2x-x^2}\)
Phương trình trở thành:
\(\frac{2}{a}=\frac{a^2}{2}\Leftrightarrow a^3=4\Rightarrow a=\sqrt[3]{4}\)
\(\Rightarrow\sqrt{x-1}+\sqrt{3-x}=\sqrt[3]{4}\)
Bạn kiểm tra lại, pt này bình phương lên giải được như bình thường nhưng nghiệm rất xấu, chắc ko ai cho đề như vậy