\(\left(3x-2\right)\left(3x+8\right)\left(x+1\right)^2+16=0\)
\(\Leftrightarrow\left(9x^2+18x-16\right)\left(x^2+2x+1\right)+16=0\)
\(\Leftrightarrow\left[9\left(x^2+2x+1\right)-25\right]\left(x^2+2x+1\right)+16=0\)
Đặt \(x^2+2x+1=a\ge0\)
\(\left(9a-25\right)a+16=0\)
\(\Leftrightarrow9a^2-25a+16=0\)
\(\Rightarrow\left[{}\begin{matrix}a=1\\a=\frac{16}{9}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2+2x+1=1\\x^2+2x+1=\frac{16}{9}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\left(x+2\right)=0\\\left(x+1\right)^2=\left(\frac{4}{3}\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\\x+1=\frac{4}{3}\\x+1=-\frac{4}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=-2\\x=\frac{1}{3}\\x=-\frac{7}{3}\end{matrix}\right.\)