Bai 1: Tim x
a) \(|\text{x-1|+|2x+4|=3}\)
b) \(|x+\dfrac{1}{3}|=|3x-\dfrac{5}{6}|\)
c) 4x.\(\left(x+\dfrac{1}{2}\right)=0\)
d) 3x.(x+2)-5(x+2)=0
Cho : \(\text{A}=\dfrac{\left(-2\right)^0+1^{2017}+\left(\dfrac{-1}{3}\right)^8\cdot3^8}{2^{15}}\)
\(\text{B}=\dfrac{6^2}{2^{16}}\)
Tính \(\dfrac{\text{A}}{\text{B}}\).
\( \left(8x-1\right)^{2n-1}:5=5^{2n}\)
\(\left(x-\dfrac{2}{9}\right)^3=\left(\dfrac{2}{3}\right)^6\)
\(\text{đề bài là tìm x nhá mn}\)
bài 3
Cho : \(\dfrac{3\text{x}-2y}{4}+\dfrac{2\text{z}-4\text{x}}{3}=\dfrac{4y-3\text{z}}{2}\)
CM : \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
tìm x biết:
a)√(x+2)=\(\dfrac{5}{7}\)
b)\(\dfrac{5}{\text{√}\left(2x\right)+1+2}\in Z\)
CMR nếu \(\dfrac{x^2-yz}{a}=\dfrac{y^2-x\text{z}}{b}=\dfrac{z^2-\text{yx}}{c}th\text{ì \dfrac{a^2-bc}{x}=\dfrac{b^2-ca}{y}=\dfrac{c^2-ab}{z}}\)
Bài 4: Tìm x,y nguyên biết
b,xy+3x-y=6
c,x-2xy+y-3=0
d,\(2x+\dfrac{1}{7}\)=\(\dfrac{1}{y}\)
Bài 5: Cho :\(\dfrac{2a+b+c+d}{a}+\dfrac{2b+c+d+a}{b}+\dfrac{2c+a+b+d}{c}+\dfrac{2d+c+b+a}{d}\)
Tính M=\(\dfrac{a+b}{c+d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{a+b}+\dfrac{d+a}{b+c}\)
Bài 6 : Tìm x,y biết:
a,\(\dfrac{x}{2}=\dfrac{y}{4}\) và \(x^2y^2=2\)
b,4x=7y và \(x^2+y^2=260\)
Bài 7:Tìm x biết:
a,\(\left|x=2020\right|+\left|x-2018\right|=2019\)
b,\(\dfrac{1}{4}.\dfrac{2}{6}.\dfrac{3}{8}.\dfrac{4}{10}.\dfrac{5}{12}...\dfrac{30}{62}.\dfrac{31}{64}=2^x\)
Bài 8: Cho \(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{4}=\dfrac{\text{z}}{5}\)
Tính M=\(\dfrac{2x+3y-\text{z}}{5x-4y+3\text{z}}\)
Bài 9: Tìm GTNN
A=\(2x^2+2y^2+2xy-14x-16y-2056\)
1. Cho biểu thức:\(A=2x^2-5x-5\)
Tính giá trị của biểu thức \(x=-2,x=\dfrac{1}{2}\)
2.Cho biểu thức:\(D=\left(x^2-1\right).\left(x^2-2\right).\left(x^2-3\right).....\left(x^2-2015\right)\)
Tính giá trị biểu thức D tại \(x=\left(x^2+2010\right).\left(x-10\right)=0\)
3.Tìm giá trị nhỏ nhất của biểu thức:
\(a.A=\left(x-3\right)^2+9\)
b.\(\left(x-1\right)+\left(y+2\right)^2+10\)
c.\(\text{|}x-1\text{|}+\left(2y-1\right)^4+1\)
4.Tính giá trị lớn nhất của biểu thức:
a.\(P=-2.\left(x-3\right)^2+5\)
b.\(Q=\dfrac{5}{\left(x-14\right)^2+21}\)
5.Tìm x thuộc Z để \(A=\dfrac{x-5}{x-3}\) thuộc Z
3/a)\(M\left(x\right)=\frac{1}{2}x^2-3x-x^3+3\)
\(=-x^3+\frac{1}{2}x^2-3x+3\)
\(N\left(x\right)=-4x+x^2+\frac{1}{2}x^3+6\)
\(=\frac{1}{2}x^3+x^2-4x^3+6\)
b)Ta có:\(\text{A}\left(x\right)=M\left(x\right)-N\left(x\right)\)
hay \(\text{A}\left(x\right)=\left(-x^3+\frac{1}{2}x^2-3x+3\right)-\left(\frac{1}{2}x^3+x^2-4x+6\right)\)
\(=-x^3+\frac{1}{2}x^2-3x+3-\frac{1}{2}x^3-x^2+4x-6\)
\(=-\frac{3}{2}x^3-\frac{1}{2}x^2+x-3\)
Đặt\(\text{A}\left(x\right)=0\)
\(\Rightarrow-\frac{3}{2}x^3-\frac{1}{2}x^2+x-3=0\)
\(-\frac{3}{2}x^3-\frac{1}{2}x^2=-x+3\)
\(-2\left(x^3-x^2\right)=-x+3\)
\(x^3-x^2+x=3+2=5\)
\(x^2=5\)
\(\Rightarrow x=\sqrt{5}\)
Vậy \(\text{A}\left(x\right)\) có 1 nghiệm là \(\sqrt{5}\)