Bài 2: Phương trình lượng giác cơ bản

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
miumiku

Giải phương trình

Nguyễn Việt Lâm
16 tháng 9 2022 lúc 16:17

18.

\(1-sin^22x+2\left(sinx+cosx\right)^3-3sin2x-3=0\)

\(\Leftrightarrow2\left(sinx+cosx\right)^3-\left(sin^22x+3sin2x+2\right)=0\)

\(\Leftrightarrow2\left(sinx+cosx\right)^3-\left(sin2x+1\right)\left(sin2x+2\right)=0\)

\(\Leftrightarrow2\left(sinx+cosx\right)^3+2\left(sinx+cosx\right)^2\left(sinx.cosx+1\right)=0\)

\(\Leftrightarrow\left(sinx+cosx\right)^2\left(sinx+cosx+sinx.cosx+1\right)=0\)

\(\Leftrightarrow\left(sinx+cosx\right)^2\left(sinx+1\right)\left(cosx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=-cosx\\sinx=-1\\cosx=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\sinx=-1\\cosx=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+k\pi\\x=-\dfrac{\pi}{2}+k2\pi\\x=\pi+k2\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
16 tháng 9 2022 lúc 16:21

19.

\(\left(cosx-sinx\right)\left(cos^2x+sin^2x+sinx.cosx\right)=1\)

\(\Leftrightarrow\left(cosx-sinx\right)\left(1+sinx.cosx\right)=1\)

Đặt \(cosx-sinx=t\in\left[-\sqrt{2};\sqrt{2}\right]\)

\(\Rightarrow t^2=1-2sinx.cosx\Rightarrow sinx.cosx=\dfrac{1-t^2}{2}\)

Pt trở thành:

\(t\left(1+\dfrac{1-t^2}{2}\right)=1\)

\(\Leftrightarrow t^3-3t+2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=1\\t=-2\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow cosx-sinx=1\)

\(\Leftrightarrow cos\left(x+\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow...\)

Nguyễn Việt Lâm
16 tháng 9 2022 lúc 16:27

20.

\(sin\dfrac{x}{2}sinx-cos\dfrac{x}{2}sin^2x+1=2cos^2\left(\dfrac{\pi}{4}-\dfrac{x}{2}\right)\)

\(\Leftrightarrow sin\dfrac{x}{2}.sinx-cos\dfrac{x}{2}.sin^2x-\left[2cos^2\left(\dfrac{\pi}{4}-\dfrac{x}{2}\right)-1\right]=0\)

\(\Leftrightarrow sin\dfrac{x}{2}.sinx-cos\dfrac{x}{2}.sin^2x-cos\left(\dfrac{\pi}{2}-x\right)=0\)

\(\Leftrightarrow sin\dfrac{x}{2}sinx-cos\dfrac{x}{2}sin^2x-sinx=0\)

\(\Leftrightarrow sinx\left(sin\dfrac{x}{2}-cos\dfrac{x}{2}.sinx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\Rightarrow x=k\pi\\sin\dfrac{x}{2}-cos\dfrac{x}{2}sinx-1=0\left(1\right)\end{matrix}\right.\)

Xét (1) 

\(\Leftrightarrow sin\dfrac{x}{2}-2sin\dfrac{x}{2}cos^2\dfrac{x}{2}-1=0\)

\(\Leftrightarrow sin\dfrac{x}{2}-2sin\dfrac{x}{2}\left(1-sin^2\dfrac{x}{2}\right)-1=0\)

\(\Leftrightarrow2sin^3\dfrac{x}{2}-sin\dfrac{x}{2}-1=0\)

\(\Leftrightarrow sin\dfrac{x}{2}=1\)

\(\Leftrightarrow...\)

Nguyễn Việt Lâm
16 tháng 9 2022 lúc 16:29

21.

\(4\left(sin^4x+cos^4x\right)+\sqrt{3}sin4x=2\)

\(\Leftrightarrow4\left[\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x\right]+\sqrt{3}sin4x=2\)

\(\Leftrightarrow4-2sin^22x+\sqrt{3}sin4x=2\)

\(\Leftrightarrow cos4x+\sqrt{3}sin4x=-1\)

\(\Leftrightarrow\dfrac{1}{2}cos4x+\dfrac{\sqrt{3}}{2}sin4x=-\dfrac{1}{2}\)

\(\Leftrightarrow cos\left(4x-\dfrac{\pi}{3}\right)=cos\left(\dfrac{2\pi}{3}\right)\)

\(\Leftrightarrow...\)

Nguyễn Việt Lâm
16 tháng 9 2022 lúc 16:38

22.

\(sin4x-cos4x=1+4\sqrt{2}sin\left(x-\dfrac{\pi}{4}\right)\)

\(\Leftrightarrow1-2sin2x.cos2x+cos^22x-sin^22x+4\left(sinx-cosx\right)=0\)

\(\Leftrightarrow\left(cos2x-sin2x\right)^2+\left(cos2x-sin2x\right)\left(cos2x+sin2x\right)+4\left(sinx-cosx\right)=0\)

\(\Leftrightarrow2cos2x\left(cos2x-sin2x\right)+4\left(sinx-cosx\right)=0\)

\(\Leftrightarrow\left(cos^2x-sin^2x\right)\left(cos2x-sin2x\right)+2\left(sinx-cosx\right)=0\)

\(\Leftrightarrow\left(cosx-sinx\right)\left(cosx+sinx\right)\left(cos2x-sin2x\right)-2\left(cosx-sinx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=sinx\Leftrightarrow x=...\\\left(cosx+sinx\right)\left(cos2x-sin2x\right)-2=0\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow cosx.cos2x-cosx.sin2x+sinx.cos2x-sinx.sin2x-2=0\)

\(\Leftrightarrow\left(cosx.cos2x-sinx.sin2x\right)+\left(sinx.cos2x-cosx.sin2x\right)=2\)

\(\Leftrightarrow cos3x-sinx=2\)

\(\Leftrightarrow\left(cos3x-1\right)+\left(1-sinx\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}cos3x=1\\sinx=1\end{matrix}\right.\) \(\Leftrightarrow...\)

Nguyễn Việt Lâm
16 tháng 9 2022 lúc 16:40

23.

\(cos7x-sin5x=\sqrt{3}\left(cos5x-sin7x\right)\)

\(\Leftrightarrow\sqrt{3}sin7x+cos7x=sin5x+\sqrt{3}cos5x\)

\(\Leftrightarrow\dfrac{\sqrt{3}}{2}sin7x+\dfrac{1}{2}cos7x=\dfrac{1}{2}sin5x+\dfrac{\sqrt{3}}{2}cos5x\)

\(\Leftrightarrow sin\left(7x+\dfrac{\pi}{6}\right)=sin\left(5x+\dfrac{\pi}{3}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}7x+\dfrac{\pi}{6}=5x+\dfrac{\pi}{3}+k2\pi\\7x+\dfrac{\pi}{6}=\dfrac{2\pi}{3}-5x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

Nguyễn Việt Lâm
16 tháng 9 2022 lúc 16:49

25.

ĐKXĐ: \(x\ne\dfrac{k\pi}{2}\)

\(1+cot2x=\dfrac{1-cos2x}{sin^22x}\)

\(\Leftrightarrow\dfrac{sin2x+cos2x}{sin2x}=\dfrac{1-\left(1-2sin^2x\right)}{4sin^2x.cos^2x}\)

\(\Leftrightarrow\dfrac{sin2x+cos2x}{sinx.cosx}=\dfrac{1}{cos^2x}\)

\(\Rightarrow sin2x.cosx+cos2x.cosx=sinx\)

\(\Leftrightarrow sin3x+sinx+cos3x+cosx=2sinx\)

\(\Leftrightarrow sin3x+cos3x=sinx-cosx\)

\(\Leftrightarrow sin\left(3x+\dfrac{\pi}{4}\right)=sin\left(x-\dfrac{\pi}{4}\right)\)

\(\Leftrightarrow...\)

Nguyễn Việt Lâm
16 tháng 9 2022 lúc 16:54

26.

\(sin3x+cos2x=1-2sinx.cos2x\)

\(\Leftrightarrow3sinx-4sin^3x+1-2sin^2x=1-2sinx\left(1-2sin^2x\right)\)

\(\Leftrightarrow3sinx-4sin^3x+1-2sin^2x=1-2sinx+4sin^3x\)

\(\Leftrightarrow8sin^3x+2sin^2x-5sinx=0\)

\(\Leftrightarrow sinx\left(8sin^2x+2sinx-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx=\dfrac{-1+\sqrt{41}}{8}\\sinx=\dfrac{-1-\sqrt{41}}{8}\end{matrix}\right.\)

\(\Leftrightarrow...\)

Nguyễn Việt Lâm
16 tháng 9 2022 lúc 16:58

27.

\(sin^2x+sin^23x-3cos^22x=0\)

\(\Leftrightarrow1-cos2x+1-cos6x-3\left(1+cos4x\right)=0\)

\(\Leftrightarrow3cos4x+cos6x+cos2x+1=0\)

\(\Leftrightarrow3cos4x+2cos4x.cos2x+1=0\)

\(\Leftrightarrow3\left(2cos^22x-1\right)+2\left(2cos^22x-1\right).cos2x+1=0\)

\(\Leftrightarrow2cos^32x+3cos^22x-cos2x-1=0\)

\(\Leftrightarrow\left(2cos2x+1\right)\left(cos^22x+cos2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=-\dfrac{1}{2}\\cos2x=\dfrac{-1-\sqrt{5}}{2}< -1\left(loại\right)\\cos2x=\dfrac{-1+\sqrt{5}}{2}\end{matrix}\right.\)

\(\Leftrightarrow...\)

Nguyễn Việt Lâm
16 tháng 9 2022 lúc 17:04

28.

ĐKXĐ: \(x\ne\left\{\dfrac{\pi}{2}+k2\pi;-\dfrac{\pi}{6}+k2\pi;\dfrac{7\pi}{6}+k2\pi\right\}\)

\(\dfrac{\left(1-2sinx\right)cosx}{\left(1+2sinx\right)\left(1-sinx\right)}=\sqrt{3}\)

\(\Leftrightarrow\dfrac{cosx-sin2x}{1-2sin^2x+sinx}=\sqrt{3}\)

\(\Leftrightarrow\dfrac{cosx-sin2x}{cos2x+sinx}=\sqrt{3}\)

\(\Rightarrow cosx-sin2x=\sqrt{3}sinx+\sqrt{3}cos2x\)

\(\Leftrightarrow sin2x+\sqrt{3}cos2x=cosx-\sqrt{3}sinx\)

\(\Leftrightarrow\dfrac{\sqrt{3}}{2}cos2x+\dfrac{1}{2}sin2x=\dfrac{1}{2}cosx-\dfrac{\sqrt{3}}{2}sinx\)

\(\Leftrightarrow cos\left(2x-\dfrac{\pi}{6}\right)=cos\left(x+\dfrac{\pi}{3}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{6}=x+\dfrac{\pi}{3}+k2\pi\\2x-\dfrac{\pi}{6}=-x-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k2\pi\left(loại\right)\\x=-\dfrac{\pi}{18}+\dfrac{k2\pi}{3}\end{matrix}\right.\)

Nguyễn Việt Lâm
23 tháng 9 2022 lúc 17:32

24.

ĐKXĐ: \(sin2x\ne0\Rightarrow x\ne\dfrac{k\pi}{2}\)

\(8sinx=\dfrac{1}{sinx}+\dfrac{\sqrt{3}}{cosx}\)

\(\Rightarrow8sinx.cosx.sinx=cosx+\sqrt{3}sinx\)

\(\Leftrightarrow4sin2x.sinx=sinx+\sqrt{3}cosx\)

\(\Leftrightarrow2cosx-2cos3x=cosx+\sqrt[]{3}sinx\)

\(\Leftrightarrow cos3x=\dfrac{1}{2}cosx-\dfrac{\sqrt{3}}{2}sinx\)

\(\Leftrightarrow cos3x=cos\left(x+\dfrac{\pi}{3}\right)\)

\(\Leftrightarrow...\)


Các câu hỏi tương tự
NTC Channel
Xem chi tiết
Mai Anh
Xem chi tiết
Minh Thảo
Xem chi tiết
07_Đạt Nguyễn Tấn 11A11
Xem chi tiết
Hương Giang
Xem chi tiết
Nkjuiopmli Sv5
Xem chi tiết
Thương Thương
Xem chi tiết
Mai Anh
Xem chi tiết
Nkjuiopmli Sv5
Xem chi tiết
Dương Linh
Xem chi tiết