Đặt x + 4 = t thì pt trở thành :
\(\left(t+1\right)^4+\left(t-1\right)^4=16\)
\(\Leftrightarrow\left(t^4+4t^3+6t^2+4t+1\right)-\left(t^4-4t^3+6t^2-4t+1\right)=16\)
\(\Leftrightarrow8t^3+8t-16=0\)
\(\Leftrightarrow8\left[t^2\left(t-1\right)+t\left(t-1\right)+2\left(t-1\right)\right]=0\)
\(\Leftrightarrow\left(t-1\right)\left(t^2+t+2\right)=0\)
\(\Leftrightarrow t-1=0\) ( do \(t^2+t+2=\left(t+\frac{1}{2}\right)^2+\frac{7}{4}>0\forall t\))
\(\Leftrightarrow t=1\Leftrightarrow x=-3\) ( TM )