Ta có: \(x^2-x+2=x^2-2.x.\frac{1}{2}+\frac{1}{4}+\frac{7}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\) [vì \(\left(x-\frac{1}{2}\right)^2\ge0\)]
Vậy \(\left|x^2-x+2\right|=x^2-x+2\)
Do đó: \(\left|x^2-x+2\right|-3x-7=0\)
\(< =>x^2-x+2-3x-7=0\)
\(< =>x^2-4x-5=0\)
\(< =>x^2+x-5x-5=0\)
\(< =>x\left(x+1\right)-5\left(x+1\right)=0\)
\(< =>\left(x-5\right)\left(x+1\right)=0\)
\(\)\(< =>\left[{}\begin{matrix}x-5=0\\x+1=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)
Vậy tập nghiệm của pt đã cho là: S={5; -1}