\(\dfrac{1}{x^2-3x+2}+\dfrac{1}{x^2-5x+6}-\dfrac{2}{x^2-4x+3}\) = 0 (ĐKXĐ: x \(\ne\) 1; x \(\ne\) 2; x \(\ne\) 3)
\(\Leftrightarrow\) \(\dfrac{1}{\left(x-1\right)\left(x-2\right)}+\dfrac{1}{\left(x-2\right)\left(x-3\right)}-\dfrac{2}{\left(x-1\right)\left(x-3\right)}\) = 0
\(\Leftrightarrow\) \(\dfrac{x-3+x-1-2\left(x-2\right)}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}\) = 0
\(\Leftrightarrow\) \(\dfrac{0}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}=0\) (luôn đúng)
Vậy pt trên có vô số nghiệm và x \(\ne\) 1; x \(\ne\) 2; x \(\ne\) 3
Chúc bn học tốt!
\(pt\text{ tương đương:}\dfrac{1}{\left(x-1\right)\left(x-2\right)}+\dfrac{1}{\left(x-2\right)\left(x-3\right)}-\dfrac{2}{\left(x-1\right)\left(x-3\right)}=0\text{ tương đương với: }\dfrac{1}{x-1}-\dfrac{1}{x-2}+\dfrac{1}{x-2}-\dfrac{1}{x-3}-\dfrac{2}{\left(x-1\right)\left(x-3\right)}=0\text{ hay:}\dfrac{1}{x-1}-\dfrac{1}{x-3}-\dfrac{1}{x-1}+\dfrac{1}{x-3}=0\text{ đúng}\)
Bổ sung đề: \(\dfrac{1}{x^2-3x+2}+\dfrac{1}{x^2-5x+6}-\dfrac{2}{x^2-4x+3}=0\)
ĐKXĐ: \(x\notin\left\{1;2;3\right\}\)
Ta có: \(\dfrac{1}{x^2-3x+2}+\dfrac{1}{x^2-5x+6}-\dfrac{2}{x^2-4x+3}=0\)
\(\Leftrightarrow\dfrac{1}{\left(x-1\right)\left(x-2\right)}+\dfrac{1}{\left(x-2\right)\left(x-3\right)}-\dfrac{2}{\left(x-1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\dfrac{1}{x-2}-\dfrac{1}{x-1}+\dfrac{1}{x-3}-\dfrac{1}{x-2}-\dfrac{1}{x-3}+\dfrac{1}{x-1}=0\)
\(\Leftrightarrow0x=0\)(luôn đúng)
Vậy: S={|x|x∉{1;2;3}}