a.x-\(\dfrac{5x+2}{6}=\dfrac{7-3x}{4}\)
⇔\(x=\dfrac{7-3x}{4}+\dfrac{5x+2}{6}\)
⇔\(x=\dfrac{21-9x+10x+4}{12}\)
⇔x=\(\dfrac{x+25}{12}\)
⇔12x=x+25
⇔x=\(\dfrac{25}{11}\)
Vậy pt đã cho có n0 là S=\(\left\{\dfrac{25}{11}\right\}\)
b.ĐKXĐ:x≠-2;x≠2
\(\dfrac{x-2}{x+2}-\dfrac{3}{x-2}=\dfrac{2\left(x-11\right)}{x^2-4}\)
⇔\(\dfrac{\left(x-2\right)\cdot\left(x-2\right)-3\cdot\left(x+2\right)}{\left(x-2\right)\cdot\left(x+2\right)}\)=\(\dfrac{2x-22}{\left(x-2\right)\cdot\left(x+2\right)}\)
⇔\(\dfrac{x^2-7x-2}{\left(x-2\right)\cdot\left(x+2\right)}=\dfrac{2x-22}{\left(x-2\right)\cdot\left(x+2\right)}\)
⇒\(\left(x^2-7x-2\right)\cdot\left(x-2\right)\cdot\left(x+2\right)=\left(2x-22\right)\cdot\left(x-2\right)\cdot\left(x+2\right)\)
⇔x2-7x-2=2x-22
⇔x2-9x+20=0
⇔(x-4)(x-5)=0
⇔\(\left\{{}\begin{matrix}x-4=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)
Vậy pt đã cho có n0 là S={4;5}
\(\left(\dfrac{3}{2x+1}+\dfrac{4x+2}{2x+1}\right)\cdot\left(5x-2\right)=\dfrac{5x-2}{2x+1}\)
⇔\(\dfrac{\left(4x+5\right)\cdot\left(5x-2\right)}{2x+1}=\dfrac{5x-2}{2x+1}\)
⇒(4x+5)(5x-2)(2x+1)=(5x-2)(2x+1)
⇔4x+5=1
⇔x=-1
Vậy pt đã cho có n0 là S={-1}
d.\(\dfrac{2x-1}{\left(x+1\right)\cdot\left(x^2-x+1\right)}+\dfrac{1}{x+1}=\dfrac{2}{x^2-x+1}\)
⇔\(\dfrac{2x-1+x^2-x+1}{\left(x+1\right)\cdot\left(x^2-x+1\right)}=\dfrac{2}{x^2-x+1}\)
⇔\(\dfrac{x\cdot\left(x+1\right)}{\left(x+1\right)\cdot\left(x^2-x+1\right)}=\dfrac{2}{x^2-x+1}\)
⇔\(\dfrac{x}{x^2-x+1}=\dfrac{2}{x^2-x+1}\)
⇒x=2
Vậy pt đã cho có n0 là S={2}