\(\Delta=\left(2m-4\right)^2-4\left(2m-5\right)\)
\(=4m^2-16m+16-8m+20\)
\(=4m^2-24m+36=\left(2m-6\right)^2>=0\)
Do đó: Phương trình luôn có hai nghiệm với mọi m
\(\Delta=\left(2m-4\right)^2-4\left(2m-5\right)\)
\(=4m^2-16m+16-8m+20\)
\(=4m^2-24m+36=\left(2m-6\right)^2>=0\)
Do đó: Phương trình luôn có hai nghiệm với mọi m
Cho phương trình x2 -2(m-1)x - 2m = 0. Tìm m để phương trình có 2 nghiệm phân biệt x1 x2 sao cho x12 + x1 - x2 = 5 - 2m
Cho phương trình x2 - (m+2) x + 2m = 0 (1) (Với m là tham số, ẩn x).
a) Giải phương trình (1) với m = 1.
b) Tìm giá trị của m để phương trình (1) có hai nghiệm phân biệt ; thỏa mãn \(x_1\left(m+2\right)+x_2^2\le3\) .
Cho phương trình:x2-2(m-1)x+m2-2m=0 (m là tham số)
a,Giải phương trình với m=3
b,Tìm m để phương trình có 1 nghiệm x=-2.Với m tìm được hãy tìm nghiệm còn lại của phương trình
c,Tìm m để phương trình có 2 nghiệm x1 và x2 thỏa mãn:x12+x22=4
cho phương trình ẩn x: \(x^2-\left(2m+1\right)x+m^2+5m=0\)
a, giải phương trình với m = -2
b, tìm m để phương trình có hai nghiệm sao cho tích các nghiệm bằng 6
cho phương trình x2 - 2 (m - 1)x - 2m + 5 = 0 (m là tham số)
tính các giá trị của m để phương trình có 2 nghiệm phân biệt x1 , x2 (x1 < x2) thỏa mãn x1 - x2 = -2
cho hệ: \(\left\{{}\begin{matrix}mx-y=2m\\x-my=m+1\end{matrix}\right.\)
a. giải hệ phương trình khi m=2
b. tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn: x2 - y2=\(\dfrac{5}{2}\)
X^2-2(m-1)x-2m=0 a, Tìm m để phương trình có 2 nghiệm phân biệt t/m x1^2+x1-x2=5-2m b,Tìm m để p trình có 2 nghiệm pb t/m x1=3x2 c,Tìm m để phương trình có 2 no pb t/m x1/x2=3
cho phương trình x^2 + (2*m-1)*x+m^2 = 0 Tìm m để phương trình có 2 nghiện phân biệt x1 x2 thỏa mã x1-x2=-2m-2
Cho phương trình \(x^2-4x-2m+5=0\)
a.Giải phương trình khi m=3
b.Tìm m để phương trình có 2 nghiệm x1,x2 thỏa mãn \(x_1^2+x_2^2+5x_1x_2=3\left(x_1+x_2\right)\)