\(\left(2x^2+1\right)\left(4x-3\right)=\left(2x^2+1\right)\left(x-12\right)\)
\(\Leftrightarrow\left(2x^2+1\right)\left(4x-3\right)-\left(2x^2+1\right)\left(x-12\right)=0\)
\(\Leftrightarrow\left(2x^2+1\right)\left(4x-3-x+12\right)=0\)
\(\Leftrightarrow\left(2x^2+1\right)\left(3x+9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2+1=0\left(loại\right)\\3x+9=0\end{matrix}\right.\)
\(\Leftrightarrow x=-3\)
\(\left(2x^2+1\right)\cdot\left(4x-3\right)=\left(2x^2+1\right)\cdot\left(x-12\right)\)
\(\Leftrightarrow4x-3=x-12\)(chia 2 vế cho \(2x^2+1\ne0\))
\(\Leftrightarrow3x=-9\)
\(\Leftrightarrow x=-3\)