ĐK: \(x\ge0\)
\(\Leftrightarrow\sqrt[3]{x+7}-2-\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\dfrac{x-1}{\sqrt[3]{\left(x+7\right)^2}+2\sqrt[3]{x+7}+4}-\dfrac{x-1}{\sqrt{x}+1}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\dfrac{1}{\sqrt[3]{\left(x+7\right)^2}+2\sqrt[3]{x+7}+4}-\dfrac{1}{\sqrt{x}+1}\right)=0\)
Dễ thấy với \(x\ge0\) thì \(\dfrac{1}{\sqrt[3]{\left(x+7\right)^2}+2\sqrt[3]{x+7}+4}-\dfrac{1}{\sqrt{x}+1}< 0\)
Vậy x=1 (TM).
Vậy pt có nghiệm là x=1.