Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tyra

Giải phương trình: Sin^3x + cos^3x - sinx - cosx = cos2x

Lê Thị Thục Hiền
16 tháng 6 2021 lúc 14:47

\(sin^3x+cos^3x-sinx-cosx=cos2x\)

\(\Leftrightarrow\left(sinx+cosx\right)\left(sin^2x-sinx.cosx+cos^2x\right)-\left(sinx+cosx\right)-\left(cos^2x-sin^2x\right)\)\(=0\)

\(\Leftrightarrow\left(sinx+cosx\right)\left(1-sinx.cosx\right)-\left(sinx+cosx\right)-\left(cosx+sinx\right)\left(cosx-sinx\right)=0\)​​

\(\Leftrightarrow\left(sinx+cosx\right)\left(sinx-cosx-sinx.cosx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=0\left(1\right)\\sinx-cosx-sinx.cosx=0\left(2\right)\end{matrix}\right.\)

TH1: (1)\(\Leftrightarrow\sqrt{2}.sin\left(x+\dfrac{\pi}{4}\right)=0\)\(\Leftrightarrow x=-\dfrac{\pi}{4}+k\pi\left(k\in Z\right)\)

TH2: Đặt \(t=sinx-cosx\) ;\(t\in\left(-2;2\right)\)

\(\Rightarrow\dfrac{t^2-1}{2}=-sinx.cosx\)

Pt (2)\(\Rightarrow t+\dfrac{t^2-1}{2}=0\)\(\Leftrightarrow t^2+2t-1=0\) \(\Leftrightarrow\left[{}\begin{matrix}t=-1+\sqrt{2}\left(tm\right)\\t=-1-\sqrt{2}\left(ktm\right)\end{matrix}\right.\)

\(\Rightarrow sinx-cosx=-1+\sqrt{2}\)\(\Leftrightarrow\sqrt{2}cos\left(x+\dfrac{\pi}{4}\right)=-\sqrt{2}+1\)

\(\Leftrightarrow cos\left(x+\dfrac{\pi}{4}\right)=\dfrac{1-\sqrt{2}}{\sqrt{2}}\)

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+arc.cos\dfrac{1-\sqrt{2}}{2}+k2\pi\\x=\dfrac{-\pi}{4}-arc.cos\dfrac{1-\sqrt{2}}{2}+k2\pi\end{matrix}\right.\)(\(k\in\)\(Z\))

Vậy...

 

 

Aki Tsuki
16 tháng 6 2021 lúc 14:45

undefinedundefined


Các câu hỏi tương tự
Nguyên Nguyên
Xem chi tiết
Hoàng Anh
Xem chi tiết
Julian Edward
Xem chi tiết
tran duc huy
Xem chi tiết
Trần
Xem chi tiết
Đào Trà
Xem chi tiết
Nguyễn Minh Đức
Xem chi tiết
Ngô Thành Chung
Xem chi tiết
ĐỖ THỊ THANH HẬU
Xem chi tiết