đk: \(\left[{}\begin{matrix}x>9\\0\le x< 9\end{matrix}\right.\)
Ta có: \(\dfrac{\sqrt{x}+3}{\sqrt{x}-3}=2\)
\(\Leftrightarrow\sqrt{x}+3=2\sqrt{x}-6\)
\(\Leftrightarrow\sqrt{x}-2\sqrt{x}=-6-3\)
\(\Leftrightarrow\sqrt{x}=9\)
hay x=81
đk: \(\left[{}\begin{matrix}x>9\\0\le x< 9\end{matrix}\right.\)
Ta có: \(\dfrac{\sqrt{x}+3}{\sqrt{x}-3}=2\)
\(\Leftrightarrow\sqrt{x}+3=2\sqrt{x}-6\)
\(\Leftrightarrow\sqrt{x}-2\sqrt{x}=-6-3\)
\(\Leftrightarrow\sqrt{x}=9\)
hay x=81
giải phương trình
\(\dfrac{2\sqrt{x}+5}{18}\)=2+\(\dfrac{\sqrt{x}-3}{6}\)
giải phương trình:
\(\dfrac{\sqrt{x-1}}{\sqrt{x^2-x}}=3\)
Giải phương trình sau:
a) \(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)
b) \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
c) \(2x-x^2+\sqrt{6x^2-12x+7}=0\)
d) \(\left(x+1\right)\left(x+4\right)-3\sqrt{x^2+5x+2}=6\)
Bài 1: Giải phương trình
\(\sqrt{x^2-25}-6=3\sqrt{x+5}-2\sqrt{x-5}\)
Bài 2: Cho biểu thức A = \(\dfrac{\sqrt{x}}{\sqrt{x}-3};\) B = \(\dfrac{7}{\sqrt{x}+1}-\dfrac{12}{\left(\sqrt{x}+1\right)\left(3-\sqrt{x}\right)}\) .
a) Rút gọn M = A – B
b) Tìm giá trị nguyên nhỏ nhất để biểu thức M đạt giá trị nguyên nhỏ nhất.
Giúp mình với, mình đang cần gấp ạ
Giải các phương trình sau:
a) \(\sqrt{25x^2-9}-2\sqrt{5x+3}=0\)
b) \(\dfrac{\sqrt{x-3}}{\sqrt{2x+1}}=2\)
c) \(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=3\)
* Giải phương trình
\(\sqrt{4x+8}+3\sqrt{x+2}=3+\dfrac{4}{5}\sqrt{25x+50}\)
* Chứng minh đẳng thức
\(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=\sqrt{6}\)
Cho biểu thức \(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{3\sqrt{x}+1}{x-1}\), \(x\ge0,x\ne1\)
a) Rút gọn biểu thức A.
b) Giải phương trình \(\left(\sqrt{x}+1\right).A=x\)
c) Đặt \(B=\dfrac{7A}{3\left(2\sqrt{x}-1\right)};x\ge0,x\ne1,x\ne\dfrac{1}{4}\). Tìm số hữu tỉ x để B có giá trị nguyên.
giải phương trình :
\(\sqrt{25x-125}-3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=6\)
Giải các phương trình sau:
a. \(\sqrt{25x+75}+2\sqrt{9x+27}=5\sqrt{x+3}+18\)
b. \(\sqrt{4x-8}-14\sqrt{\dfrac{x-2}{49}}=\sqrt{9x-18}+8\)