\(\dfrac{2-x}{2010}-1=\dfrac{1-x}{2011}-\dfrac{x}{2012}\\ \Leftrightarrow\dfrac{2-x-2010}{2010}=\dfrac{2012-2012x-2011x}{2011\cdot2012}\\ \Leftrightarrow\dfrac{-2008-x}{2010}=\dfrac{2012-4023x}{4046132}\\ \Leftrightarrow\left(-2008-x\right)4046132=\left(2012-4023x\right)2010\\ \Leftrightarrow-8124633056-4046132x=4044120-8086230x\\ \Leftrightarrow-4046132x+8086230x=4044120+8124633056\\ \Leftrightarrow4040098x=8128677176\\ \Leftrightarrow x=2012\)
\(\dfrac{2-x}{2010}-1=\dfrac{1-x}{2011}-\dfrac{x}{2012}\\ \Leftrightarrow2023066\left(2-x\right)-4066362660=2022060\left(1-x\right)-2021055x\\ \Leftrightarrow4046132-2023066x-4066362660=2022060-2022060x-2021055x\\ \Leftrightarrow-4062316528-2023066x=2022060-4043115x\\ \Leftrightarrow-2023066x+4043115x=2022060+4062316528\\ \Leftrightarrow2020049x=4064338588\\ \Leftrightarrow x=2012\)