a)
\(\frac{1}{x-2}+3=3-\frac{x}{x-2}\)
<=> \(\frac{1}{x-2}=-\frac{x}{x-2}\)
<=> x = - 1
Vậy S = {- 1}
b)
\(\frac{x+5}{x-5}-\frac{x-5}{x+5}=\frac{20}{x^2-25}\)
<=> \(\frac{\left(x+5\right)^2}{\left(x-5\right)\left(x+5\right)}-\frac{\left(x-5\right)^2}{\left(x-5\right)\left(x+5\right)}=\frac{20}{\left(x-5\right)\left(x+5\right)}\)
<=> (x + 5)2 - (x - 5)2 = 20
<=> (x + 5 - x + 5)(x + 5 + x - 5) = 20
<=> 10 . 2x = 20
<=> x = 20 : 20
<=> x = 1
Vậy S = {1}
c)
\(\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{2\left(x-3\right)\left(x+1\right)}\)
<=> \(\frac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\frac{x\left(x-3\right)}{2\left(x-3\right)\left(x+1\right)}=\frac{2x}{2\left(x-3\right)\left(x+1\right)}\)
<=> x(x + 1) + x(x - 3) = 2x
<=> x2 + x + x2 - 3x - 2x = 0
<=> 2x2 - 4x = 0
<=> 2x(x - 2) = 0
<=> \(\left[\begin{matrix}x=0\\x-2=0\end{matrix}\right.\)
<=> \(\left[\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy S = {0; 2}