\(x^2+x+1=y^2\\ \Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+1=y^2\\ \Leftrightarrow\left(x+\dfrac{1}{2}\right)^2-y^2=-1\\ \Leftrightarrow\left(x-y+\dfrac{1}{2}\right)\left(x+y+\dfrac{1}{2}\right)=-1=\left(-1\right)\cdot1\\ TH_1:\left\{{}\begin{matrix}x-y+\dfrac{1}{2}=-1\\x+y+\dfrac{1}{2}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=-\dfrac{3}{2}\\x+y=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=1\end{matrix}\right.\)
\(TH_2:\left\{{}\begin{matrix}x-y+\dfrac{1}{2}=1\\x+y+\dfrac{1}{2}=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=\dfrac{1}{2}\\x+y=-\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-1\end{matrix}\right.\)