\(\left(x+2\right)\left(x+12\right)\left(x+4\right)\left(x+6\right)=165x^2\)
\(\Leftrightarrow\left(x^2+14x+24\right)\left(x^2+10x+24\right)=165x^2\)
Nhận thấy \(x=0\) không phải nghiệm, pt đã cho tương đương:
\(\left(x+14+\dfrac{24}{x}\right)\left(x+10+\dfrac{24}{x}\right)=165\)
Đặt \(x+\dfrac{24}{x}+10=t\):
\(t\left(t+4\right)-165=0\Leftrightarrow t^2+4t-165=0\Rightarrow\left[{}\begin{matrix}t=11\\t=-15\end{matrix}\right.\)
TH1: \(x+\dfrac{24}{x}+10=11\Leftrightarrow x^2-x+24=0\) (vô nghiệm)
TH2: \(x+\dfrac{24}{x}+10=-15\Leftrightarrow x^2+25x+24=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-24\end{matrix}\right.\)