Lời giải:
$(x^2-x+1)+(x^2-2x+3)+(x^2-3x+5)+....+(x^2-100x+199)=300$
$\Leftrightarrow (x^2+x^2+...+x^2)-(x+2x+3x+...+100x)+(1+3+5+...+199)=300$
$\Leftrightarrow 100x^2-5050x+10000=300$
$\Leftrightarrow 2x^2-101x+200=6$
$\Leftrightarrow 2x^2-101x+194=0$
$\Leftrightarrow (2x-97)(x-2)=0$
$\Rightarrow x=\frac{97}{2}$ hoặc $x=2$