\(x^2+2=\sqrt{16x-23}+\sqrt{\left(x^2-2x+4\right)\left(3x-2\right)}\)
\(x\sqrt{3x-2}+\left(x+1\right)\sqrt{5x-1}=8x-3\)
Giải hệ phương trình: \(\begin{cases}\frac{x^3+x^2+x}{x+1}=\left(y+3\right)\sqrt{\left(x+1\right)\left(y+2\right)}\\3x^2-8x-3=4\left(x+1\right)\sqrt{y+2}\end{cases}\)
1. Giải các phương trình sau:
a)\(\sqrt[4]{x-\sqrt{x^2-1}}+\sqrt[]{x+\sqrt{x^2-1}}=2\)
b)\(x^2-x-\sqrt{x^2-x+13}=7\)
c)\(x^2+2\sqrt{x^2-3x+1}=3x+4\)
d)\(2x^2+5\sqrt{x^2+3x+5}=23-6x\)
e)\(\sqrt{x^2+2x}=-2x^2-4x+3\)
f)\(\sqrt{\left(x+1\right)\left(x+2\right)}=x^2+3x+4\)
2. Giải các bất phương trình sau:
1)\(\sqrt{x^2-4x+5}\ge2x^2-8x\)
2)\(2x^2+4x+3\sqrt{3-2x-x^2}>1\)
3)\(\dfrac{\sqrt{-3x+16x-5}}{x-1}\le2\)
4)\(\sqrt{x^2-3x+2}+\sqrt{x^2-4x+3}\ge2\sqrt{x^2-5x+4}\)
5)\(\dfrac{9x^2-4}{\sqrt{5x^2-1}}\le3x+2\)
Giải hệ phương trình: \(\left\{{}\begin{matrix}\frac{1}{\sqrt{4x^2+8x+5}}+\frac{1}{\sqrt{4y^2-8x+5}}=\frac{2}{\sqrt{\left(x+y\right)^2+1}}\\\frac{1}{\sqrt{x-1}}+\frac{1}{\sqrt{y-3}}=\frac{2\sqrt{5}}{5}\end{matrix}\right.\)
Giải phương trình \(2\sqrt{\left(x-1\right)\left(x+2\right)}+3=\sqrt{x-1}+6\sqrt{x+2}\)
giải phương trình :
\(3x^2+15x+2\sqrt{\left(3x+4\right)\left(x+4\right)}=2\)
Giải hệ phương trình
\(\left\{{}\begin{matrix}\sqrt{\left(x-1\right)^2+\left(y-2\right)^2}=\sqrt{\left(x+1\right)^2+\left(y-1\right)^2}\\\sqrt{\left(x-1\right)^2+\left(y-2\right)^2}=\sqrt{\left(x-5\right)^2+\left(y+1\right)^2}\end{matrix}\right.\)
Giải phương trình \(\sqrt{x\left(8x-15\right)}=\sqrt{4x^2-5x+1}-2\sqrt{x-2}\)
giải hệ phương trình \(\left\{{}\begin{matrix}x\sqrt{y-1}+y\sqrt{x-1}=1\\x^2y^2+16x+16y=12+20xy\end{matrix}\right.\)