TH1: x-2=0 và x-3=1
=>x=2 và x=4(loại)
TH2: x-2=0 và x-3=-1
=>x=2(nhận)
TH3: x-2=1 và x-3=0
=>x=3(nhận)
TH3: x-2=-1 và x-3=0
=>x=1 và x=3(loại)
TH1: x-2=0 và x-3=1
=>x=2 và x=4(loại)
TH2: x-2=0 và x-3=-1
=>x=2(nhận)
TH3: x-2=1 và x-3=0
=>x=3(nhận)
TH3: x-2=-1 và x-3=0
=>x=1 và x=3(loại)
giải phương trình:\(\left(1+\sqrt{x^2+2020x}+2019\right)\left(\sqrt{x+2019}-\sqrt{x+1}\right)=2018\)
Giải PT : \(\left|x-2018\right|^{2018}+\left|x-2019\right|^{2019}=1\)
Giúp mk nha
giải phương trình : \(\frac{\sqrt{x-2018}-1}{x-2018}+\frac{\sqrt{y-2019}-1}{y-2019}+\frac{\sqrt{z-2029}-1}{z-2020}=\frac{3}{4}\)
tìm nghiệm nguyên của pt : \(2x^2+4x=19-3y^2\)
cm với mọi số tự nhiên n thì : \(a_n=n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\) là số chính phương
1.Giải hệ phương trình sau: \(\left\{{}\begin{matrix}\sqrt{x-2018}-\sqrt{y-2019}=1\\\sqrt{y-2018}-\sqrt{x-2019}=1\end{matrix}\right.\)
2. Cho a,b là các số hữu tỉ thỏa mãn \(\left(a^2+b^2-2\right)\left(a+b\right)^2+\left(1-ab\right)^2=-4ab\)
CMR: \(\sqrt{1+ab}\) là một số hữu tỉ
Help me!!!!Please!!!!
1/Cho a,b,c thỏa mãn \(\frac{2}{\left(x^2+1\right)\left(x-1\right)}=\frac{ax+b}{x^2+1}+\frac{c}{x-1}\)
Tính giá trị biểu thức M=\(\frac{a^{2017}+b^{2018}+c^{2019}}{a^{2017}b^{2018}c^{2019}}\)
2/Cho x,y,z≠0 và x+y+z=2008
Tính giá trị biểu thức P=\(\frac{x^3}{\left(x-y\right)\left(x-z\right)}+\frac{y^3}{\left(y-x\right)\left(y-z\right)}+\frac{z^3}{\left(z-y\right)\left(z-x\right)}\)
Giải phương trình sau : \(\left(x+1\right)^{2018}+\left(x+2\right)^{2018}=\dfrac{1}{2^{2017}}\)
Giải hệ phương trình: \(\left\{{}\begin{matrix}x^2y^{2018}-2x+y^2=0\\2x^2-4x+3+y^{2019}=0\end{matrix}\right.\)
Cho \(x=\dfrac{2}{\sqrt{5}+1}\). Tính giá trị biểu thức:
M\(=2019\left(x^2+x-2\right)^{2018}+2018\left(4x^4-6x^2+6x-3\right)^{2019}\)
Help me!!!
Giải phương trình: \(\left(x+2\right).\left(x-3\right).\left(x^2+2x-24\right)=16x^2\)