\(\Leftrightarrow x-3x^2+2\sqrt{\left(x^2+3\right)\left(2x^2-x+1\right)}=4\)
\(\Leftrightarrow3x^2-x+4-2\sqrt{\left(x^2+3\right)\left(2x^2-x+1\right)}=0\)
Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2-x+1}=a>0\\\sqrt{x^2+3}=b>0\end{matrix}\right.\) \(\Rightarrow a^2+b^2=3x^2-x+4\)
Pt trở thành:
\(a^2+b^2-2ab=0\Leftrightarrow\left(a-b\right)^2=0\Leftrightarrow a=b\)
\(\Leftrightarrow2x^2-x+1=x^2+3\)
\(\Leftrightarrow x^2-x-2=0\)