Giải các phương trình sau:
1. \(a,\dfrac{6}{x-1}-\dfrac{4}{x-3}=\dfrac{8}{2x-6}\)
\(b,\dfrac{1}{x-2}+\dfrac{5}{x+1}=\dfrac{3}{2-x}\)
\(c,\dfrac{3x}{x-2}-\dfrac{x}{x-5}=\dfrac{3x}{\left(x-2\right)\left(5-x\right)}\)
2. \(a,\left(x+2\right)\left(3-4x\right)=x^2+4x+4\)
\(b,2x^2-6x+1\)
Bài 1: Giải phương trình
\(a,\dfrac{x+1}{2009}+\dfrac{x+3}{2007}=\dfrac{x+5}{2005}+\dfrac{x+7}{1993}\)
\(b,\left(x+2\right)^4+\left(x+4\right)^4=14\)
\(c,\left(x-3\right)\left(x-2\right)x+1=60\)
d, \(2x^4+3x^3-x^2+3x+2=0\)
Giải phương trình:\(8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)^2-4\left(x+\dfrac{1}{x}\right)^2\left(x^2+\dfrac{1}{x^2}\right)=\left(x+4\right)^2\)
giải phương trình
\(8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)-4\left(x^2+\dfrac{1}{x^2}\right)\left(x+\dfrac{1}{x}\right)^2=\left(x+4\right)^2\)
Giải phương trình:
b) \(\dfrac{7}{2}-\left(\dfrac{x}{5}-\dfrac{1}{4}\right)=\dfrac{9}{2}\)
c) (x+2) . (x-5). (x-6) (x+3) = 180
d) \(x-\dfrac{\dfrac{x}{2}-\dfrac{3+x}{4}}{2}=\dfrac{2x-\dfrac{10-7x}{3}}{2}-x-1\)
e) \(\left(\dfrac{1}{1.101}+\dfrac{1}{2.102}+........+\dfrac{1}{10.110}\right).\left(x-3\right)=\dfrac{1}{1.11}+\dfrac{1}{2.12}+.......+\dfrac{1}{100.110}\)
giải phương trình
1)\(\dfrac{1}{x^2}+\dfrac{1}{\left(x+2\right)^2}=\dfrac{10}{9}\)
2) \(x^2+\dfrac{25x^2}{\left(x+5\right)^5}=11\)
3) x\(\left(\dfrac{5-x}{x+1}\right)\left(x+\dfrac{5-x}{x+1}\right)=6\)
4) \(\left(\dfrac{x}{x+1}\right)^2\left(\dfrac{x}{x-1}\right)^2=90\)
Giải các phương trình:
\(a,\dfrac{3}{x+1}-\dfrac{1}{x-2}=\dfrac{9}{\left(x+1\right)\left(2-x\right)}\)
\(b,\dfrac{x-4}{x-1}+\dfrac{x+4}{x+1}=2\)
Câu 1 :
Cho biểu thức \(P=\left(\dfrac{x^2}{x^2-3}+\dfrac{2x^2-24}{x^4-9}\right).\dfrac{7}{x^2+8}vớix\ne\pm\sqrt{3}\)
1.Rút gọn P
2.Tìm x để P nhận giá trị nguyên
Câu 2 :
1.Giải phương trình : \(\dfrac{1}{2x-2021}+\dfrac{1}{3x+2022}=\dfrac{1}{15x-2023}-\dfrac{1}{10x-2024}\)
2.Cho đa thức \(P\left(x\right)=2x^3-x^2+ax+bvàQ\left(x\right)=x^2-4x+4\).Tìm a,b để đa thức P(x) chia hết cho đa thức Q(x)
Câu 3:
1.Cho hai số thực x,y thỏa mãn \(0< xy\le1\) . Chứng minh \(\dfrac{1}{x^2+1}+\dfrac{1}{y^2+1}\le\dfrac{2}{xy+1}\)
2.Cho \(S=a^3_1+a^3_2+a^3_3+...+a^3_{100}\) với \(a_1,a_2,a_3,...a_{100}\) là các số nguyên thỏa mãn \(a_1+a_2+a_3+...+a_{100}=2021^{2022}.CMR:S-1⋮6\)
giải pt: \(\dfrac{1}{\left(x-1\right)\left(x-2\right)}+\dfrac{1}{\left(x-3\right)\left(x-2\right)}=\dfrac{1}{\left(x-3\right)\left(x-4\right)}+\dfrac{1}{\left(x-1\right)\left(x-4\right)}\)