\(đkxđ:x\ne1;2;3;4;5\\ \Leftrightarrow\dfrac{1}{\left(x-1\right)\left(x-2\right)}+\dfrac{1}{\left(x-2\right)\left(x-3\right)}+\dfrac{1}{\left(x-3\right)\left(x-4\right)}+\dfrac{1}{\left(x-4\right)\left(x-5\right)}=\dfrac{1}{15}\\ \Leftrightarrow-\dfrac{1}{x-1}+\dfrac{1}{x-2}-\dfrac{1}{x-2}+\dfrac{1}{x-3}-\dfrac{1}{x-3}+\dfrac{1}{x-4}-\dfrac{1}{x-4}+\dfrac{1}{x-5}=\dfrac{1}{15}\\ \Leftrightarrow\dfrac{1}{x-5}-\dfrac{1}{x-1}=\dfrac{1}{15}\\ \Leftrightarrow60=x^2-6x+5\\ \)
\(\Leftrightarrow60=x^2-6x+5\\ \Leftrightarrow\left[{}\begin{matrix}x-11=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=11\\x=-5\end{matrix}\right.\\ \Rightarrow D\)